American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Jul 2010
EditorialEffect of chronic alcohol feeding on physiological and molecular parameters of renal thiamin transport.
The renal thiamin reabsorption process plays an important role in regulating thiamin body homeostasis and involves both thiamin transporters-1 and -2 (THTR1 and THTR2). Chronic alcohol use is associated with thiamin deficiency. Although a variety of factors contribute to the development of this deficiency, effects of chronic alcohol use on renal thiamin transport have not been thoroughly examined. ⋯ Chronic alcohol feeding also caused a significant reduction in the level of expression of thiamin pyrophosphokinase but not that of the mitochondrial thiamin pyrophosphate transporter. These studies show that chronic alcohol feeding inhibits the entry and exit of thiamin in the polarized renal epithelial cells and that the effect is, at least in part, mediated at the transcriptional level. These findings also suggest that chronic alcohol feeding interferes with the normal homeostasis of thiamin in renal epithelial cells.
-
Am. J. Physiol. Renal Physiol. · May 2008
EditorialChloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury.
Mortality from sepsis has remained high despite recent advances in supportive and targeted therapies. Toll-like receptors (TLRs) sense bacterial products and stimulate pathogenic innate immune responses. Mice deficient in the common adapter protein MyD88, downstream from most TLRs, have reduced mortality and acute kidney injury (AKI) from polymicrobial sepsis. ⋯ An oligodeoxynucleotide inhibitor (H154) of TLR9 and TLR9-deficient mice mirror the actions of chloroquine in all functional parameters that we tested. In addition, chloroquine decreased TLR9 protein abundance in spleen, further suggesting that TLR9 signaling may be a major target for the protective actions of chloroquine. Our findings indicate that chloroquine improves survival by inhibiting multiple pathways leading to polymicrobial sepsis and that chloroquine and TLR9 inhibitors represent viable broad-spectrum and targeted therapeutic strategies, respectively, that are promising candidates for further clinical development.