American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Mar 2012
Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.
We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. ⋯ As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.
-
Am. J. Physiol. Renal Physiol. · Feb 2012
Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. ⋯ In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.
-
Am. J. Physiol. Renal Physiol. · Jan 2012
Glutamine administration ameliorates sepsis-induced kidney injury by downregulating the high-mobility group box protein-1-mediated pathway in mice.
Acute kidney injury (AKI) is a severe complication of sepsis. High-mobility group box (HMGB)-1 was implicated as a late mediator of lethal systemic inflammation in sepsis. Since glutamine (GLN) was shown to have anti-inflammatory and antioxidant properties, we hypothesized that GLN administration may downregulate an HMGB-1-mediated pathway and thus ameliorate sepsis-induced AKI. ⋯ Septic mice with GLN administration exhibited decreased HMGB-1, TLR4, RAGE, and phosphorylated NF-κB p65 protein expressions and reduced nitrotyrosine levels in kidney tissues. The histological findings showed that damage to the kidneys was less severe, and survival improved in the SG group. These results indicated that a single dose of GLN administered after the initiation of sepsis plays a prophylactic role in downregulating the expressions of HMGB-1-related mediators and decreasing oxidative stress in the kidneys, which may consequently have ameliorated AKI induced by sepsis.
-
Am. J. Physiol. Renal Physiol. · Jan 2012
Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). ⋯ Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.
-
Am. J. Physiol. Renal Physiol. · Dec 2011
COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice.
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. ⋯ In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.