The journal of headache and pain
-
Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. ⋯ These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.
-
Hyperbaric oxygen (HBO) has the potential to relieve neuropathic pain. The purpose of this study was to determine whether the NO-cGMP-PKG signaling pathway is involved in the analgesic effects of early hyperbaric oxygen treatment of neuropathic pain in rats. ⋯ Early HBO therapy could significantly improve symptoms of hyperalgesia of neuropathic pain in rats, possibly via activation of the NO-cGMP-PKG signaling transduction pathway.
-
Neuroimaging data has implicated the temporal pole (TP) in migraine pathophysiology; the density and functional activity of the TP were reported to fluctuate in accordance with the migraine cycle. Yet, the exact link between TP morpho-functional abnormalities and migraine is unknown. Here, we examined whether non-invasive anodal transcranial direct current stimulation (tDCS) ameliorates abnormal interictal multimodal sensory processing in patients with migraine. ⋯ Our study shows for the first time that enhancing excitability of the TP with anodal tDCS normalizes abnormal interictal visual information processing in migraineurs. This finding has implications for the role of the TP in migraine, and specifically highlights the ventral stream of the visual pathway as a pathophysiological neural substrate for abnormal visual processing in migraine.
-
Motor-evoked potentials (MEPs) produced by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex can be an objective measure of cortical excitability. Previously, MEP thresholds were found to be normal, increased, or even reduced in patients with migraine. In the present study, we determined whether the level of cortical excitability changes with the time interval from the last migraine attack, thereby accounting for the inconsistencies in previous reports. ⋯ Our results suggest that the threshold for evoking MEPs is influenced by the proximity of an attack; specifically, the threshold is lower when a long time interval has passed after an attack, and is higher (within the range of normative values) when measured close to an attack. These dynamic RMT variations resemble those we reported previously for visual and somatosensory evoked potentials and may represent time-dependent plastic changes in brain excitability in relation to the migraine cycle.