The journal of headache and pain
-
Sensitization to sensory stimuli is an essential feature of migraine attacks. The relationship between the clinical course of migraine and increased sensitivity to olfactory stimuli has been little studied so far. ⋯ In patients with longer migraine disease duration and higher migraine-related impairment, osmophobia was more frequently observed. These results might support the hypothesis of increasing sensitization with increasing burden of migraine.
-
The pathogenesis of migraine chronification remains unclear. Functional and structural magnetic resonance imaging studies have shown impaired functional and structural alterations in the brains of patients with chronic migraine. The cerebellum and periaqueductal gray (PAG) play pivotal roles in the neural circuits of pain conduction and analgesia in migraine. However, few neurotransmitter metabolism studies of these migraine-associated regions have been performed. To explore the pathogenesis of migraine chronification, we measured gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels in the dentate nucleus (DN) and PAG of patients with episodic and chronic migraine and healthy subjects. ⋯ Neurochemical levels in the DN and PAG may provide evidence of the pathological mechanisms of migraine chronification. Correlations between migraine characteristics and neurochemical levels revealed the pathological mechanisms of the relevant characteristics.
-
Several functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks. ⋯ In individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms.
-
Targeting fatty acid amide hydrolase (FAAH) is a promising therapeutic strategy to combat certain forms of pain, including migraine headache. FAAH inhibitors, such as the O-biphenyl-3-yl carbamate URB597, have been shown to produce anti-hyperalgesic effects in animal models of migraine. The objective of this study was to investigate the behavioral and biochemical effects of compounds ARN14633 and ARN14280, two URB597 analogs with improved solubility and bioavailability, in a migraine-specific rat model in which trigeminal hyperalgesia is induced by nitroglycerin (NTG) administration. ⋯ Finally, both compounds strongly elevated levels of endocannabinoids and/or other FAAH substrates in cervical spinal cord and medulla, and, to a lesser extent, in the trigeminal ganglia. The results indicate that the novel global FAAH inhibitors ARN14633 and ARN14280 elicit significant anti-hyperalgesic effects in a migraine-specific animal model and inhibit the associated peptidergic-inflammatory response. Although the precise mechanism underlying these effects remains to be elucidated, our results support further investigational studies of FAAH blockade as a potential therapeutic strategy to treat migraine conditions.