Nature reviews. Neuroscience
-
Nat. Rev. Neurosci. · Jul 2013
ReviewCognitive and emotional control of pain and its disruption in chronic pain.
Chronic pain is one of the most prevalent health problems in our modern world, with millions of people debilitated by conditions such as back pain, headache and arthritis. To address this growing problem, many people are turning to mind-body therapies, including meditation, yoga and cognitive behavioural therapy. This article will review the neural mechanisms underlying the modulation of pain by cognitive and emotional states - important components of mind-body therapies. It will also examine the accumulating evidence that chronic pain itself alters brain circuitry, including that involved in endogenous pain control, suggesting that controlling pain becomes increasingly difficult as pain becomes chronic.
-
Corticostriatal projections are essential components of forebrain circuits and are widely involved in motivated behaviour. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) neurons. Convergent evidence points to IT versus PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signalling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an aetiological factor in neurodevelopmental, neuropsychiatric and movement disorders - autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington's and Parkinson's diseases and major depression are highlighted here.
-
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity both in civilian life and on the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. ⋯ Nevertheless, promising neuroprotective drugs that were identified as being effective in animal TBI models have all failed in Phase II or Phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies.
-
The voltage-gated sodium channel Na(V)1.7 is preferentially expressed in peripheral somatic and visceral sensory neurons, olfactory sensory neurons and sympathetic ganglion neurons. Na(V)1.7 accumulates at nerve fibre endings and amplifies small subthreshold depolarizations, poising it to act as a threshold channel that regulates excitability. Genetic and functional studies have added to the evidence that Na(V)1.7 is a major contributor to pain signalling in humans, and homology modelling based on crystal structures of ion channels suggests an atomic-level structural basis for the altered gating of mutant Na(V)1.7 that causes pain.
-
Nat. Rev. Neurosci. · Jun 2012
ReviewThe pain of social disconnection: examining the shared neural underpinnings of physical and social pain.
Experiences of social rejection, exclusion or loss are generally considered to be some of the most 'painful' experiences that we endure. Indeed, many of us go to great lengths to avoid situations that may engender these experiences (such as public speaking). Why is it that these negative social experiences have such a profound effect on our emotional well-being? Emerging evidence suggests that experiences of social pain--the painful feelings associated with social disconnection--rely on some of the same neurobiological substrates that underlie experiences of physical pain. Understanding the ways in which physical and social pain overlap may provide new insights into the surprising relationship between these two types of experiences.