Nature reviews. Neuroscience
-
Nat. Rev. Neurosci. · Apr 2012
ReviewThe ageing cortical synapse: hallmarks and implications for cognitive decline.
Normal ageing is associated with impairments in cognitive function, including memory. These impairments are linked, not to a loss of neurons in the forebrain, but to specific and relatively subtle synaptic alterations in the hippocampus and prefrontal cortex. Here, we review studies that have shed light on the cellular and synaptic changes observed in these brain structures during ageing that can be directly related to cognitive decline in young and aged animals. We also discuss the influence of the hormonal status on these age-related alterations and recent progress in the development of therapeutic strategies to limit the impact of ageing on memory and cognition in humans.
-
Nat. Rev. Neurosci. · Oct 2011
ReviewOpiate versus psychostimulant addiction: the differences do matter.
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction - hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction - all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
-
Nat. Rev. Neurosci. · Sep 2011
ReviewThe neurobiology of gliomas: from cell biology to the development of therapeutic approaches.
Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.
-
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. ⋯ Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.
-
Nat. Rev. Neurosci. · Feb 2011
ReviewAmyloid-β and tau--a toxic pas de deux in Alzheimer's disease.
Amyloid-β and tau are the two hallmark proteins in Alzheimer's disease. Although both amyloid-β and tau have been extensively studied individually with regard to their separate modes of toxicity, more recently new light has been shed on their possible interactions and synergistic effects in Alzheimer's disease. Here, we review novel findings that have shifted our understanding of the role of tau in the pathogenesis of Alzheimer's disease towards being a crucial partner of amyloid-β. As we gain a deeper understanding of the different cellular functions of tau, the focus shifts from the axon, where tau has a principal role as a microtubule-associated protein, to the dendrite, where it mediates amyloid-β toxicity.