Intensive care medicine experimental
-
Intensive Care Med Exp · Dec 2014
Unilateral mechanical asymmetry: positional effects on lung volumes and transpulmonary pressure.
Ventilated patients with asymmetry of lung or chest wall mechanics may be vulnerable to differing lung stresses or strains dependent on body position. Our purpose was to examine transpulmonary pressure (P TP) and end-expiratory lung volume (functional residual capacity (FRC)) during body positioning changes in an animal model under the influence of positive end-expiratory pressure (PEEP) or experimental pleural effusion (PLEF). ⋯ FRC did not differ among horizontal positions; however, semi-Fowler's positioning significantly raised FRC. P TP proved insensitive to mechanical asymmetry. While end-expiratory P TP was negative at PEEP1, applying PEEP10 caused a transition to positive P TP, suggestive of reopening of initially compressed lung units.
-
Intensive Care Med Exp · Dec 2014
The effect of vitamin C on plasma volume in the early stage of sepsis in the rat.
Previous experimental studies have shown that vitamin C has several beneficial effects in sepsis and burns, such as decreased tissue oedema, improved endothelial barrier function and decreased transcapillary leakage of plasma markers. It has still not been investigated, though, if vitamin C has any impact specifically on plasma volume. The present study aims at testing the hypothesis that vitamin C decreases plasma volume loss in sepsis. ⋯ Vitamin C treatment did not decrease the loss of plasma volume in the septic rat. The diuretic effect of vitamin C was in accordance with previous studies.
-
Intensive Care Med Exp · Dec 2014
'Chronomics' in ICU: circadian aspects of immune response and therapeutic perspectives in the critically ill.
Complex interrelations exist between the master central clock, located in the suprachiasmatic nuclei of the hypothalamus, and several peripheral clocks, such as those found in different immune cells of the body. Moreover, external factors that are called 'timekeepers', such as light/dark and sleep/wake cycles, interact with internal clocks by synchronizing their different oscillation phases. Chronobiology is the science that studies biologic rhythms exhibiting recurrent cyclic behavior. ⋯ The aims of this article are to describe circadian physiology during acute stress and to discuss the effects of ICU milieu upon circadian rhythms, in order to emphasize the value of considering circadian-immune disturbance as a potential tool for personalized treatment. Thus, besides neoplastic processes, critical illness could be linked to what has been referred as 'chronomics': timing and rhythm. In addition, different therapeutic perspectives will be presented in association with environmental approaches that could restore circadian connection and hasten physical recovery.
-
Intensive Care Med Exp · Dec 2014
Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.
The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). ⋯ During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.
-
Intensive Care Med Exp · Dec 2014
Genetic and pharmacologic inhibition of Tpl2 kinase is protective in a mouse model of ventilator-induced lung injury.
Mechanical stress induced by injurious ventilation leads to pro-inflammatory cytokine production and lung injury. The extracellular-signal-regulated-kinase, ERK1/2, participates in the signaling pathways activated upon mechanical stress in the lungs to promote the inflammatory response. Tumor progression locus 2 (Tpl2) is a MAP3kinase that activates ERK1/2 upon cytokine or TLR signaling, to induce pro-inflammatory cytokine production. The role of Tpl2 in lung inflammation, and specifically in the one caused by mechanical stress has not been investigated. The aim of the study was to examine if genetic or pharmacologic inhibition of Tpl2 could ameliorate ventilator-induced lung injury. ⋯ Genetic and pharmacologic inhibition of Tpl2 is protective in a mouse model of ventilator-induced lung injury, ameliorating both high-permeability pulmonary edema and lung inflammation.