Intensive care medicine experimental
-
Intensive Care Med Exp · Jan 2020
Meta-analysis of targeted temperature management in animal models of cardiac arrest.
Targeted temperature management (TTM) of 32 to 34 °C has been the standard treatment for out-of-hospital cardiac arrest since clinical trials in 2002 indicated benefit on survival and neurological outcome. In 2013, a clinical trial showed no difference in outcome between TTM of 33 °C and TTM of 36 °C. In this meta-analysis, we investigate the evidence for TTM in animal models of cardiac arrest. ⋯ TTM is beneficial under most experimental conditions in animal models of cardiac arrest or global brain ischemia. However, research on gyrencephalic species and especially comorbid animals is uncommon and a possible translational gap. Also, low study quality suggests risk of bias within studies. Future animal research should focus on mimicking the clinical scenario and employ similar rigour in trial design to that of modern clinical trials.
-
Intensive Care Med Exp · Dec 2019
ReviewEthical considerations about artificial intelligence for prognostication in intensive care.
Prognosticating the course of diseases to inform decision-making is a key component of intensive care medicine. For several applications in medicine, new methods from the field of artificial intelligence (AI) and machine learning have already outperformed conventional prediction models. Due to their technical characteristics, these methods will present new ethical challenges to the intensivist. ⋯ AI models for prognostication will become valuable tools in intensive care. However, they require technical refinement and a careful implementation according to the standards of medical ethics.
-
Intensive Care Med Exp · Dec 2019
Esmolol for cardioprotection during resuscitation with adrenaline in an ischaemic porcine cardiac arrest model.
The effectiveness of adrenaline during resuscitation continues to be debated despite being recommended in international guidelines. There is evidence that the β-adrenergic receptor (AR) effects of adrenaline are harmful due to increased myocardial oxygen consumption, post-defibrillation ventricular arrhythmias and increased severity of post-arrest myocardial dysfunction. Esmolol may counteract these unfavourable β-AR effects and thus preserve post-arrest myocardial function. We evaluated whether a single dose of esmolol administered prior to adrenaline preserves post-arrest cardiac output among successfully resuscitated animals in a novel, ischaemic cardiac arrest porcine model. ⋯ We observed similar post-arrest cardiac output with and without a single dose of esmolol prior to adrenaline administration during low-flow VA-ECMO in an ischaemic cardiac arrest pig model.
-
Intensive Care Med Exp · Sep 2019
Respiratory and metabolic acidosis correction with the ADVanced Organ Support system.
The lung, the kidney, and the liver are major regulators of acid-base balance. Acidosis due to the dysfunction of one or more organs can increase mortality, especially in critically ill patients. Supporting compensation by increasing ventilation or infusing bicarbonate is often ineffective. Therefore, direct removal of acid may represent a novel therapeutic approach. This can be achieved with the ADVanced Organ Support (ADVOS) system, an enhanced renal support therapy based on albumin dialysis. Here, we demonstrate proof of concept for this technology. ⋯ In conclusion, ADVOS was able to remove more than 50% of the amount of CO2 typically produced by an adult human. Blood pH was maintained stable within the physiological range through compensation of a metabolic acid load by albumin dialysate. These in vitro results will require confirmation in patients.
-
Intensive Care Med Exp · Jul 2019
ReviewPower to mechanical power to minimize ventilator-induced lung injury?
Mechanical ventilation is a life-supportive therapy, but can also promote damage to pulmonary structures, such as epithelial and endothelial cells and the extracellular matrix, in a process referred to as ventilator-induced lung injury (VILI). Recently, the degree of VILI has been related to the amount of energy transferred from the mechanical ventilator to the respiratory system within a given timeframe, the so-called mechanical power. During controlled mechanical ventilation, mechanical power is composed of parameters set by the clinician at the bedside-such as tidal volume (VT), airway pressure (Paw), inspiratory airflow (V'), respiratory rate (RR), and positive end-expiratory pressure (PEEP) level-plus several patient-dependent variables, such as peak, plateau, and driving pressures. ⋯ Experimental studies have reported that, even at low levels of mechanical power, increasing VT causes lung damage. Mechanical power should be normalized to the amount of ventilated pulmonary surface; the ratio of mechanical power to the alveolar area exposed to energy delivery is called "intensity." Recognizing that mechanical power may reflect a conjunction of parameters which may predispose to VILI is an important step toward optimizing mechanical ventilation in critically ill patients. However, further studies are needed to clarify how mechanical power should be taken into account when choosing ventilator settings.