Journal of cellular and molecular medicine
-
Tanycytes are elongated hypothalamic glial cells that cover the basal walls of the third ventricle; their apical regions contact the cerebrospinal fluid (CSF), and their processes reach hypothalamic neuronal nuclei that control the energy status of an organism. These nuclei maintain the balance between energy expenditure and intake, integrating several peripheral signals and triggering cellular responses that modify the feeding behaviour and peripheral glucose homeostasis. One of the most important and well-studied signals that control this process is glucose; however, the mechanism by which this molecule is sensed remains unknown. ⋯ These and other data, which will be discussed in this review, suggest that hypothalamic glucosensing is mediated through a metabolic interaction between tanycytes and neurons through lactate. This article will summarize the recent evidence that supports the importance of tanycytes in hypothalamic glucosensing, and discuss the possible mechanisms involved in this process. Finally, it is important to highlight that a detailed analysis of this mechanism could represent an opportunity to understand the evolution of associated pathologies, including diabetes and obesity, and identify new candidates for therapeutic intervention.
-
Patients undergoing mechanical ventilation (MV) often experience respiratory muscle dysfunction, which complicates the weaning process. There is no simple means to predict or diagnose respiratory muscle dysfunction because diagnosis depends on measurements in muscle diaphragmatic fibre. As oxidative stress is a key mechanism contributing to MV-induced respiratory muscle dysfunction, the aim of this study was to determine if differences in blood measures of oxidative stress in patients who had success and failure in a spontaneous breathing trial (SBT) could be used to predict the outcome of MV. ⋯ Before SBT, WF patients presented higher oxidative damage in lipids and higher antioxidant levels and decreased nitric oxide concentrations. The observed differences in measures between WF and WS patients persisted throughout and after the weaning trial. In conclusion, WF may be predicted based on higher malondialdehyde, higher vitamin C and lower nitric oxide concentration in plasma.
-
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. ⋯ However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
-
Delayed bone healing and non-union occur in approximately 10% of long bone fractures. Despite intense investigations and progress in understanding the processes governing bone healing, the specific pathophysiological characteristics of the local microenvironment leading to non-union remain obscure. ⋯ In an attempt to understand better the pathophysiological processes involved in the development of fracture non-union, a number of studies have endeavoured to investigate the biological profile of tissue obtained from the non-union site and analyse any differences or similarities of tissue obtained from different types of non-unions. In the herein study, we present the existing evidence of the biological and molecular profile of fracture non-union tissue.
-
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. ⋯ Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2 (-) , cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.