Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients.
The emerging COVID-19 caused by SARS-CoV-2 infection poses severe challenges to global public health. Serum antibody testing is becoming one of the critical methods for the diagnosis of COVID-19 patients. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and spike (S) protein after symptom onset in the intensive care unit (ICU) and non-ICU patients. 130 blood samples from 38 COVID-19 patients were collected. ⋯ The increase of S-IgG positively correlated with the decrease of C-reactive protein (CRP) in non-ICU patients. N and S specific IgM and IgG increased gradually after symptom onset and can be used for detection of SARS-CoV-2 infection. Analysis of the dynamics of S-IgG may help to predict prognosis.
-
Emerg Microbes Infect · Dec 2020
Accurate serology for SARS-CoV-2 and common human coronaviruses using a multiplex approach.
Serology is a crucial part of the public health response to the ongoing SARS-CoV-2 pandemic. Here, we describe the development, validation and clinical evaluation of a protein micro-array as a quantitative multiplex immunoassay that can identify S and N-directed SARS-CoV-2 IgG antibodies with high specificity and sensitivity and distinguish them from all currently circulating human coronaviruses. The method specificity was 100% for SARS-CoV-2 S1 and 96% for N antigen based on extensive syndromic (n=230 cases) and population panel (n=94) testing that also confirmed the high prevalence of seasonal human coronaviruses. ⋯ For a subset of these patients longitudinal samples were provided up to 56 dps. Mild cases showed absent or delayed, and lower SARS-CoV-2 antibody responses. Overall, we present the development and extensive clinical validation of a multiplex coronavirus serological assay for syndromic testing, to answer research questions regarding to antibody responses, to support SARS-CoV-2 diagnostics and to evaluate epidemiological developments efficiently and with high-throughput.
-
Emerg Microbes Infect · Dec 2020
Clinical TrialDevelopment of an automatic integrated gene detection system for novel severe acute respiratory syndrome-related coronavirus (SARS-CoV2).
In December 2019, Wuhan, China suffered a serious outbreak of a novel coronavirus infectious disease (COVID) caused by novel severe acute respiratory syndrome-related coronavirus (SARS-CoV 2). To quickly identify the pathogen, we designed and screened primer sets, and established a sensitive and specific qRT-PCR assay for SARS-CoV 2; the lower limit of detection (LOD) was 14.8 (95% CI: 9.8-21) copies per reaction. We combined this qRT-PCR assay with an automatic integration system for nucleic acid extraction and amplification, thereby establishing an automatic integrated gene detection system (AIGS) for SARS-CoV 2. ⋯ The clinical sensitivity of the AIGS test was 97.62% (95% CI: 0.9320-0.9951) based on the commercial kit test result, and concordance analysis showed a high agreement in SARS-CoV-2 detection between the two assays, Pearson R was 0.9623 (95% CI: 0.9523-0.9703). The results indicated that this AIGS could be used for rapid detection of SARS-CoV 2. With the advantage of simple operation and less time consuming, AIGS could be suitable for SARS-CoV2 detection in primary medical institutions, thus would do a great help to improve detection efficiency and control the spread of COVID-19.
-
Coronavirus disease 2019 (COVID-19) has become a pandemic with increasing numbers of cases worldwide. SARS-CoV-2, the causative virus of COVID-19, is mainly transmitted through respiratory droplets or through direct and indirect contact with an infected person. The possibility of potential faecal-oral transmission was investigated in this study. ⋯ A small number of patients had strong faecal detoxification ability. The live virus in faeces could be an important source of contamination, which may lead to infection and further spread in areas with poor sanitary conditions. The findings of this study have public health significance and they should be considered when formulating disease control strategies.
-
Emerg Microbes Infect · Dec 2020
Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide since it was confirmed as the causative agent of COVID-19. Molecular diagnosis of the disease is typically performed via nucleic acid-based detection of the virus from swabs, sputum or bronchoalveolar lavage fluid (BALF). However, the positive rate from the commonly used specimens (swabs or sputum) was less than 75%. ⋯ The GICA was found to be positive with the detected 82.2% (37/45) of RT-qPCR confirmed COVID-19 cases, as well as 32.0% (8/25) of clinically confirmed, RT-qPCR negative patients (4-14 days after symptom onset). Investigation of IgM-negative, RT-qPCR-positive COVID-19 patients showed that half of them developed severe disease. The GICA was found to be a useful test to complement existing PCR-based assays for confirmation of COVID-19, and a delayed specific IgM antibody response was observed among COVID-19 patients with severe progression.