Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
LetterLack of cross-neutralization by SARS patient sera towards SARS-CoV-2.
Despite initial findings indicating that SARS-CoV and SARS-CoV-2 are genetically related belonging to the same virus species and that the two viruses used the same entry receptor, angiotensin-converting enzyme 2 (ACE2), our data demonstrated that there is no detectable cross-neutralization by SARS patient sera against SARS-CoV-2. We also found that there are significant levels of neutralizing antibodies in recovered SARS patients 9-17 years after initial infection. These findings will be of significant use in guiding the development of serologic tests, formulating convalescent plasma therapy strategies, and assessing the longevity of protective immunity for SARS-related coronaviruses in general as well as vaccine efficacy.
-
Emerg Microbes Infect · Dec 2020
LetterSARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease.
We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ∼5-fold and ∼7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity.
-
Emerg Microbes Infect · Dec 2020
Comparative StudyComparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection.
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. ⋯ We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.
-
Emerg Microbes Infect · Dec 2020
Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia.
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with droplets and contact as the main means of transmission. Since the first case appeared in Wuhan, China, in December 2019, the outbreak has gradually spread nationwide. Up to now, according to official data released by the Chinese health commission, the number of newly diagnosed patients has been declining, and the epidemic is gradually being controlled. ⋯ Immune function is a strong defense against invasive pathogens and there is currently no specific antiviral drug against the virus. This article reviews the immunological changes of coronaviruses like SARS, MERS and other viral pneumonia similar to SARS-CoV-2. Combined with the published literature, the potential pathogenesis of COVID-19 is inferred, and the treatment recommendations for giving high-doses intravenous immunoglobulin and low-molecular-weight heparin anticoagulant therapy to severe type patients are proposed.