Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2021
Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates.
COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. ⋯ Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.
-
Emerg Microbes Infect · Dec 2021
Preclinical evaluation of a synthetic peptide vaccine against SARS-CoV-2 inducing multiepitopic and cross-reactive humoral neutralizing and cellular CD4 and CD8 responses.
Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice. ⋯ Antibodies induced by peptide 446-480 showed broad recognition of S proteins and S-derived peptides belonging to SARS-CoV-2 variants of concern. Importantly, vaccination with peptide 446-480 or with a cyclic version of peptide 446-488 containing a disulphide bridge between cysteines 480 and 488, protected humanized K18-hACE2 mice from a lethal dose of SARS-CoV-2 (62.5 and 75% of protection; p < 0.01 and p < 0.001, respectively). This region could be the basis for a peptide vaccine or other vaccine platforms against Covid-19.
-
Emerg Microbes Infect · Dec 2021
Beneficial effect of combinational methylprednisolone and remdesivir in hamster model of SARS-CoV-2 infection.
Effective treatments for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Dexamethasone has been shown to confer survival benefits to certain groups of hospitalized patients, but whether glucocorticoids such as dexamethasone and methylprednisolone should be used together with antivirals to prevent a boost of SARS-CoV-2 replication remains to be determined. Here, we show the beneficial effect of methylprednisolone alone and in combination with remdesivir in the hamster model of SARS-CoV-2 infection. ⋯ In addition, the suppressive effect of methylprednisolone on antibody response was alleviated in the presence of remdesivir. Thus, combinational anti-inflammatory and antiviral therapy might be an effective, safer and more versatile treatment option for COVID-19. These data support testing of the efficacy of a combination of methylprednisolone and remdesivir for the treatment of COVID-19 in randomized controlled clinical trials.
-
Emerg Microbes Infect · Dec 2021
H1N1 exposure during the convalescent stage of SARS-CoV-2 infection results in enhanced lung pathologic damage in hACE2 transgenic mice.
ABSTRACTThe risk of secondary infection with SARS-CoV-2 and influenza A virus is becoming a practical problem that must be addressed as the flu season merges with the COVID-19 pandemic. As SARS-CoV-2 and influenza A virus have been found in patients, understanding the in vivo characteristics of the secondary infection between these two viruses is a high priority. ⋯ Moreover, upon H1N1 exposure on 7 and 14 dpi of SARS-CoV-2 infection, the lymphocyte population activated at a lower level with T cell suppressed in both PBMC and lung. These findings will be valuable for evaluating antiviral therapeutics and vaccines as well as guiding public health work.
-
Emerg Microbes Infect · Dec 2021
A novel DNA and protein combination COVID-19 vaccine formulation provides full protection against SARS-CoV-2 in rhesus macaques.
The current study aims to develop a safe and highly immunogenic COVID-19 vaccine. The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine induced high level neutralizing antibody and T cell immune responses in both small and large animal models. More significantly, the co-delivery of DNA and protein components at the same time elicited full protection against intratracheal challenge of SARS-CoV-2 viruses in immunized rhesus macaques. As both DNA and protein vaccines have been proven safe in previous human studies, and DNA vaccines are capable of eliciting germinal center B cell development, which is critical for high-affinity memory B cell responses, the DNA and protein co-delivery vaccine approach has great potential to serve as a safe and effective approach to develop COVID-19 vaccines that provide long-term protection.