Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
LetterRetrospective detection of SARS-CoV-2 in hospitalized patients with influenza-like illness.
Since the first report of the coronavirus disease (COVID-19) in late December 2019, the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now widely spread to more than 187 countries and regions. However, it is unclear whether there has been cryptic transmission before these early officially confirmed cases, we therefore retrospectively screened for the SARS-CoV-2 RNA in 1271 nasopharyngeal swab samples, as well as the prevalence of IgM, IgG, and total antibodies against SARS-CoV-2 in 357 matched serum samples collected from hospitalized patients with influenza-like illness between 1 December 2018 and 31 March 2020 in Shanghai Ruijin Hospital. ⋯ Before this time point, the presence of SARS-CoV-2 was not observed, which limited the possibility that SARS-CoV-2 has already spread among the population before the large-scale outbreak. Additionally, among 6662 patients with influenza-like illness from 1 December 2017 to 31 March 2020, the overall number of patients positive for influenza and other respiratory viruses during the COVID-19 period decreased significantly when compared with that in the same period of the last two years, reflecting that public health interventions can effectively control the spread of common respiratory viruses.
-
This commentary provides an overview and links to presentations of a recent virtual congress series organized by the International Society for Vaccines (ISV) focused on COVID-19 vaccines. The series provided the academic community and vaccine developers as well as the wider general public with balanced information of the global response and resources for COVID-19 vaccines under development featuring: 1) NGOs and the regulatory perspective, 2) the status of vaccine development efforts, and 3) panel discussions to present and discuss challenges. ISV is a non-profit scientific organization whose members work on all areas relevant to vaccines. ISV plans to host additional virtual symposia including regional meetings and incorporating other topics along with COVID-19 vaccines.
-
Emerg Microbes Infect · Dec 2020
LetterLack of cross-neutralization by SARS patient sera towards SARS-CoV-2.
Despite initial findings indicating that SARS-CoV and SARS-CoV-2 are genetically related belonging to the same virus species and that the two viruses used the same entry receptor, angiotensin-converting enzyme 2 (ACE2), our data demonstrated that there is no detectable cross-neutralization by SARS patient sera against SARS-CoV-2. We also found that there are significant levels of neutralizing antibodies in recovered SARS patients 9-17 years after initial infection. These findings will be of significant use in guiding the development of serologic tests, formulating convalescent plasma therapy strategies, and assessing the longevity of protective immunity for SARS-related coronaviruses in general as well as vaccine efficacy.
-
Emerg Microbes Infect · Dec 2020
First isolation, in-vivo and genomic characterization of zoonotic variegated squirrel Bornavirus 1 (VSBV-1) isolates.
The variegated squirrel bornavirus 1 (VSBV-1), a member of the family Bornaviridae, was discovered in 2015 in a series of lethal human infections. Screening approaches revealed kept exotic squirrels as the putative source of infection. Infectious virus was successfully isolated by co-cultivation of infected primary squirrel cells with permanent cell lines. ⋯ Sequencing showed minor adaptations within the VSBV-1 genome comparing to the viral genomes from infected squirrels, cell cultures or rat tissues. In conclusion, we were able to generate the first VSBV-1 isolates and provide in vivo animal model data in Lewis rats revealing substantial differences between VSBV-1 and BoDV-1. Furthermore, the presented data are a precondition for insights into the transmission and pathogenesis of this novel zoonotic pathogen.
-
Emerg Microbes Infect · Dec 2020
LetterSARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease.
We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ∼5-fold and ∼7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity.