Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
Case ReportsJamestown Canyon virus in Massachusetts: clinical case series and vector screening.
Jamestown Canyon virus (JCV) is a neuroinvasive arbovirus that is found throughout North America and increasingly recognized as a public health concern. From 2004 to 2012, an average of 1.7 confirmed cases were reported annually in the United States, whereas from 2013 to 2018 this figure increased over seventeen-fold to 29.2 cases per year. The rising number of reported human infections highlights the need for better understanding of the clinical manifestations and epidemiology of JCV. ⋯ We identified JCV in 0.6% of mosquito pools, a similar prevalence to neighboring Connecticut. We assembled the first Massachusetts JCV genome directly from a mosquito sample, finding high identity to JCV isolates collected over a 60-year period. Further studies are needed to reconcile the low vector prevalence and low rate of viral evolutionary change with the increasing number of reported cases.
-
This commentary provides an overview and links to presentations of a recent virtual congress series organized by the International Society for Vaccines (ISV) focused on COVID-19 vaccines. The series provided the academic community and vaccine developers as well as the wider general public with balanced information of the global response and resources for COVID-19 vaccines under development featuring: 1) NGOs and the regulatory perspective, 2) the status of vaccine development efforts, and 3) panel discussions to present and discuss challenges. ISV is a non-profit scientific organization whose members work on all areas relevant to vaccines. ISV plans to host additional virtual symposia including regional meetings and incorporating other topics along with COVID-19 vaccines.
-
Emerg Microbes Infect · Dec 2020
LetterLack of cross-neutralization by SARS patient sera towards SARS-CoV-2.
Despite initial findings indicating that SARS-CoV and SARS-CoV-2 are genetically related belonging to the same virus species and that the two viruses used the same entry receptor, angiotensin-converting enzyme 2 (ACE2), our data demonstrated that there is no detectable cross-neutralization by SARS patient sera against SARS-CoV-2. We also found that there are significant levels of neutralizing antibodies in recovered SARS patients 9-17 years after initial infection. These findings will be of significant use in guiding the development of serologic tests, formulating convalescent plasma therapy strategies, and assessing the longevity of protective immunity for SARS-related coronaviruses in general as well as vaccine efficacy.
-
Emerg Microbes Infect · Dec 2020
LetterSARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease.
We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ∼5-fold and ∼7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity.
-
Emerg Microbes Infect · Dec 2020
Comparative StudyComparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection.
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is currently causing a worldwide pandemic with high morbidity and mortality. Development of animal models that recapitulate important aspects of coronavirus disease 2019 (COVID-19) is critical for the evaluation of vaccines and antivirals, and understanding disease pathogenesis. SARS-CoV-2 has been shown to use the same entry receptor as SARS-CoV-1, human angiotensin-converting enzyme 2 (hACE2) [1-3]. ⋯ We show that K18-hACE2 mice replicate virus to high titers in the nasal turbinates, lung and brain, with high lethality, and cytokine/chemokine production. In contrast, adenovirus-mediated delivery results in viral replication to lower titers limited to the nasal turbinates and lung, and no clinical signs of infection. The K18-hACE2 model provides a stringent model for testing vaccines and antivirals, whereas the adenovirus delivery system has the flexibility to be used across multiple genetic backgrounds and modified mouse strains.