Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
Low toxicity and high immunogenicity of an inactivated vaccine candidate against COVID-19 in different animal models.
The ongoing COVID-19 pandemic is causing huge impact on health, life, and global economy, which is characterized by rapid spreading of SARS-CoV-2, high number of confirmed cases and a fatality/case rate worldwide reported by WHO. The most effective intervention measure will be to develop safe and effective vaccines to protect the population from the disease and limit the spread of the virus. An inactivated, whole virus vaccine candidate of SARS-CoV-2 has been developed by Wuhan Institute of Biological Products and Wuhan Institute of Virology. ⋯ Preliminary observation in ongoing phase I and II clinical trials of the vaccine candidate in Wuzhi County, Henan Province, showed that the vaccine is well tolerant. The results were characterized by very low proportion and low degree of side effects, high levels of neutralizing antibodies, and seroconversion. These results consistent with the results obtained from preclinical data on the safety.
-
Emerg Microbes Infect · Jan 2020
LetterPotent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody.
The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 11,900 laboratory-confirmed human infections, including 259 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor-binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. ⋯ The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. These results suggest that CR3022 may have the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g. m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, implying that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.
-
Emerg Microbes Infect · Jan 2020
ReviewA tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses.
World Health Organization has declared the ongoing outbreak of coronavirus disease 2019 (COVID-19) a Public Health Emergency of International Concern. The virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses. Human infection with SARS-CoV-2 leads to a wide range of clinical manifestations ranging from asymptomatic, mild, moderate to severe. ⋯ A comparison with SARS-CoV, Middle East respiratory syndrome coronavirus, community-acquired human coronaviruses and other pathogenic viruses including human immunodeficiency viruses is made. We summarize current understanding of the induction of a proinflammatory cytokine storm by other highly pathogenic human coronaviruses, their adaptation to humans and their usurpation of the cell death programmes. Important questions concerning the interaction between SARS-CoV-2 and host antiviral defence, including asymptomatic and presymptomatic virus shedding, are also discussed.
-
Emerg Microbes Infect · Jan 2020
Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.
A mysterious outbreak of atypical pneumonia in late 2019 was traced to a seafood wholesale market in Wuhan of China. Within a few weeks, a novel coronavirus tentatively named as 2019 novel coronavirus (2019-nCoV) was announced by the World Health Organization. We performed bioinformatics analysis on a virus genome from a patient with 2019-nCoV infection and compared it with other related coronavirus genomes. ⋯ Furthermore, its new orf8 likely encodes a secreted protein with an alpha-helix, following with a beta-sheet(s) containing six strands. Learning from the roles of civet in SARS and camel in MERS, hunting for the animal source of 2019-nCoV and its more ancestral virus would be important for understanding the origin and evolution of this novel lineage B betacoronavirus. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.