Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
ReviewProfiles of COVID-19 clinical trials in the Chinese Clinical Trial Registry.
The COVID-19 pandemic has caused a global public health crisis. There is a pressing need for evidence-based interventions to address the devastating clinical and public health effects of the COVID-19 pandemic. The Chinese scientists supported by private and government resources have adopted extensive efforts to identify effective drugs against the virus. ⋯ Hence, this review aims to make a comprehensive analysis on the profiles of COVID-19 clinical trials registered in the ChiCTR, including a wide range of characteristics. Our findings will provide a useful summary on these clinical studies since most of these studies will encounter major challenges from the design to completion. It will be a long road for the outcomes of these studies to be published and international collaboration will help the ultimate goals of developing new vaccines and anti-viral drugs.
-
Emerg Microbes Infect · Dec 2020
Meta AnalysisShort- and potential long-term adverse health outcomes of COVID-19: a rapid review.
The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of patients infected worldwide and indirectly affecting even more individuals through disruption of daily living. Long-term adverse outcomes have been reported with similar diseases from other coronaviruses, namely Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). Emerging evidence suggests that COVID-19 adversely affects different systems in the human body. ⋯ The burden of caring for COVID-19 survivors is likely to be huge. Therefore, it is important for policy makers to develop comprehensive strategies in providing resources and capacity in the healthcare system. Future epidemiological studies are needed to further investigate the long-term impact on COVID-19 survivors.
-
Emerg Microbes Infect · Dec 2020
Multicenter StudyRisks and features of secondary infections in severe and critical ill COVID-19 patients.
Objectives Severe or critical COVID-19 is associated with intensive care unit admission, increased secondary infection rate, and would lead to significant worsened prognosis. Risks and characteristics relating to secondary infections in severe COVID-19 have not been described. Methods Severe and critical COVID-19 patients from Shanghai were included. ⋯ Conclusion Our study originally illustrated secondary infection proportion in severe and critical COVID-19 patients. Culture accompanied with metagenomics sequencing increased pathogen diagnostic rate. Secondary infections risks increased after receiving invasive respiratory ventilations and intravascular devices, and would lead to a lower discharge rate and a higher mortality rate.
-
Emerg Microbes Infect · Dec 2020
Multicenter StudyMulticenter evaluation of two chemiluminescence and three lateral flow immunoassays for the diagnosis of COVID-19 and assessment of antibody dynamic responses to SARS-CoV-2 in Taiwan.
This multicenter, retrospective study included 346 serum samples from 74 patients with coronavirus disease 2019 (COVID-19) and 194 serum samples from non-COVID-19 patients to evaluate the performance of five anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests, i.e. two chemiluminescence immunoassays (CLIAs): Roche Elecsys® Anti-SARS-CoV-2 Test (Roche Test) and Abbott SARS-CoV-2 IgG (Abbott Test), and three lateral flow immunoassays (LFIAs): Wondfo SARS-CoV-2 Antibody Test (Wondfo Test), ASK COVID-19 IgG/IgM Rapid Test (ASK Test), and Dynamiker 2019-nCoV IgG/IgM Rapid Test (Dynamiker Test). We found high diagnostic sensitivities (%, 95% confidence interval [CI]) for the Roche Test (97.4%, 93.4-99.0%), Abbott Test (94.0%, 89.1-96.8%), Wondfo Test (91.4%, 85.8-94.9%), ASK Test (97.4%, 93.4-99.0%), and Dynamiker Test (90.1%, 84.3-94.0%) after >21 days of symptom onset. Meanwhile, the diagnostic specificity was 99.0% (95% CI, 96.3-99.7%) for the Roche Test, 97.9% (95% CI, 94.8-99.2%) for the Abbott Test, and 100.0% (95% CI, 98.1-100.0%) for the three LFIAs. ⋯ No difference was observed in the time to seroconversion detection of the five serological tests. Specimens from patients with COVID-19 pneumonia demonstrated a shorter seroconversion time and higher chemiluminescent signal than those without pneumonia. Our data suggested that understanding the dynamic antibody response after COVID-19 infection and performance characteristics of different serological test are crucial for the appropriate interpretation of serological test result for the diagnosis and risk assessment of patient with COVID-19 infection.
-
Emerg Microbes Infect · Dec 2020
Comparative Study Clinical TrialSerological differentiation between COVID-19 and SARS infections.
In response to the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, multiple diagnostic tests are required for acute disease diagnosis, contact tracing, monitoring asymptomatic infection rates and assessing herd immunity. While PCR remains the frontline test of choice in the acute diagnostic setting, serological tests are urgently needed. Unlike PCR tests which are highly specific, cross-reactivity is a major challenge for COVID-19 antibody tests considering there are six other coronaviruses known to infect humans. ⋯ Amongst the different platforms, capture ELISA performed best. We found that SARS survivors all have significant levels of antibodies remaining in their blood 17 years after infection. Anti-N antibodies waned more than anti-RBD antibodies, and the latter is known to play a more important role in providing protective immunity.