Best practice & research. Clinical anaesthesiology
-
Echocardiography has become an indispensable tool in the evaluation of medical and surgical patients. As ultrasound (US) machines have become more widely available and significantly more compact, there has been an exponential growth in the use of transthoracic echocardiography (TTE), transoesophageal echocardiography (TOE) and other devices in the perioperative setting. Here, we review recent findings relevant to the use of perioperative US, with a special focus on the haemodynamic management of the surgical patient.
-
Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ⋯ After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation.
-
Best Pract Res Clin Anaesthesiol · Dec 2014
ReviewImpact of hemodynamic monitoring on clinical outcomes.
In recent years, there has been a tremendous growth in available hemodynamic monitoring devices to support clinical decision-making in the operating room and intensive care unit. In addition to the "tried and true" heart rate and blood pressure monitors, there are several newer applications of existing technologies including arterial waveform analysis, intraoperative and bedside critical care echocardiography, esophageal Doppler, and tissue oximetry, among others. ⋯ While these new technologies offer promising advances in intraoperative and critical care, they are often quite costly and many devices lack strong evidence for widespread adoption into clinical practice. In this review, we highlight the current data on clinical outcomes with the use of available hemodynamic monitoring devices.
-
Best Pract Res Clin Anaesthesiol · Dec 2014
Monitoring the microcirculation in critically ill patients.
Alterations in microvascular perfusion have been identified in critically ill patients, especially in sepsis but also in cardiogenic shock, after cardiac arrest, and in high-risk surgery patients. These alterations seem to be implicated in the development of organ dysfunction and are associated with outcome. Even though microvascular perfusion can sometimes be homogenously decreased as in acute hemorrhage or in non-resuscitated cardiogenic shock, heterogeneity of perfusion is observed in sepsis and in resuscitated hemorrhagic/cardiogenic shock. ⋯ Videomicroscopic techniques can nowadays be applied at bedside but are still restricted to some selected patients (quiet or sedated patients). Tissue PCO2 is an elegant alternative but is not yet broadly used. In this manuscript, we discuss the main advantages and limitations of the techniques available for bedside evaluation of the microcirculation in critically ill patients.
-
The use of near-infrared spectroscopy (NIRS) has been increasingly adopted in cardiac surgery to measure regional cerebral oxygen saturation. This method takes advantage of the fact that light in the near-infrared spectrum penetrates tissue, including bone and muscle. Sensors are placed at fixed distances from a light emitter, and algorithms subtract superficial light absorption from deep absorption to provide an index of tissue oxygenation. ⋯ Therefore, widespread, routine use of NIRS as a standard-of-care monitor cannot be recommended at present. Recent investigations have focused on the use of NIRS in subgroups that may benefit from NIRS monitoring, such as pediatric patients. Furthermore, a novel application of processed NIRS information for monitoring cerebral autoregulation and tissue oxygenation (e.g., kidneys and the gut) is promising.