The spine journal : official journal of the North American Spine Society
-
Comparative Study
Presurgical biopsychosocial factors predict multidimensional patient: outcomes of interbody cage lumbar fusion.
Interbody cage lumbar fusion (ICLF) has been advanced to improve arthrodesis; however, little attention has been given to quality of life and functional outcomes. Studies suggest that psychosocial factors may be important modifiers of low back surgical outcomes. ⋯ Overall, despite a high rate of arthrodesis, ICLF was not associated with substantial improvements in patient functioning. Presurgical biopsychosocial variables predicted patient outcomes, which may help improve patient selection and possible targeted interventions.
-
Comparative Study
The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
The use of minimally invasive lumbar intradiscal heating techniques, including intradiscal electro-thermal therapy (IDET), endoscopic radio-frequency annuloplasty, nucleoplasty and laser discectomy, for chronic lumbar discogenic pain and contained disc herniation has recently gained popularity. The purported therapeutic mechanisms of these interventions include subtotal nuclectomy, annular nociceptor ablation, and stabilization of the annular fibers. Basic science data elucidating the biomechanical and histomorphologic alterations of heat treatments on disc remain sparse. ⋯ The application of uniform heating to nucleus pulposus disc core caused visible contraction of its circumference but not lengthwise shrinkage. The same heating shrinks the hamstring tendon and reduces its stiffness. Ultimate failure strength of the disc core specimen remains unchanged. The failure data was not obtainable for the tendon due to premature slippage from the fixation apparatus before failure. The results of this study fail to support a biomechanical justification for the application of uniform heat treatment to the whole intervertebral disc. Heating annulus fibrosus and nucleus pulposus separately to specific temperatures may have potential clinical benefits.
-
Comparative Study
Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction.
Serial analysis of gene expression during the course of intervertebral disc degeneration (IDD) could elucidate valuable insight into pathophysiology and provide a basis for identification of potential targets for the development of novel cellular- and gene-based therapies. However, very few previous studies described the changes in gene expression through the process of IDD using a suitable animal model. ⋯ The gene expression profiles of ECM components and anabolic, catabolic, and anti-catabolic factors demonstrate many characteristics similar to the findings in human disc degeneration and suggest an inability of the intervertebral disc (IVD) to mount an early anabolic response to injury, thereby offering a possible explanation for the disc's lack of reparative capabilities. Catabolic genes are strongly up-regulated both early and late in degeneration, lending strong support to the hypothesis that an anabolic or catabolic imbalance plays a primary role in IDD. According to the resultant patterns, augmenting early production of BMP-2, BMP-7, IGF-1 or TIMP-1 by gene transfer techniques might possibly alter the progressive course of degeneration as seen in the stab model. The next step will be to transfer these therapeutic genes to regulate the biologic processes and ideally alter the progressive course of disc degeneration.
-
In patients with osteoporosis, changes in spinal alignment after a vertebral compression fracture (VCF) are believed to increase the risk of fracture of the adjacent vertebrae. The alterations in spinal biomechanics as a result of osteoporotic VCF and the effects of deformity correction on the loads in the adjacent vertebral bodies are not fully understood. ⋯ The anterior shift of the compressive load path in vertebral bodies adjacent to VCF can induce additional flexion moments on these vertebrae. This eccentric loading may contribute to the increased risk of new fractures in osteoporotic vertebrae adjacent to an uncorrected VCF deformity. Bone tamp inflation under a physiologic preload significantly reduced the VCF deformity (anterior and middle vertebral body heights, segmental and vertebral kyphosis) and returned the compressive load path posteriorly, approaching the prefracture alignment. Application of extension moments also was effective in restoring the prefracture geometric and loading alignment of adjacent segments, but the middle height of the fractured vertebra and vertebral kyphotic deformity were not restored with spinal extension alone.