Articles: external-ventricular-drains.
-
Acute bacterial meningitis (ABM) is associated with severe morbidity and mortality. The most prevalent pathogens in community-acquired ABM are Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. Other pathogens may affect specific patient groups, such as newborns, older patients, or immunocompromised patients. ⋯ This review provides an insight into the role of invasive ICP monitoring and ICP-based management in the treatment of ABM. Despite weak evidence certainty, the present literature points toward enhanced patient outcomes in ABM with the use of treatment strategies aiming to normalize ICP using continuous invasive monitoring and cerebrospinal fluid diversion techniques. Continued research is needed to define when and how to employ these strategies to best improve outcomes in ABM.
-
Journal of neurosurgery · Aug 2024
Multicenter StudyA supervised, externally validated machine learning model for artifact and drainage detection in high-resolution intracranial pressure monitoring data.
In neurocritical care, data from multiple biosensors are continuously measured, but only sporadically acknowledged by the attending physicians. In contrast, machine learning (ML) tools can analyze large amounts of data continuously, taking advantage of underlying information. However, the performance of such ML-based solutions is limited by different factors, for example, by patient motion, manipulation, or, as in the case of external ventricular drains (EVDs), the drainage of CSF to control intracranial pressure (ICP). The authors aimed to develop an ML-based algorithm that automatically classifies normal signals, artifacts, and drainages in high-resolution ICP monitoring data from EVDs, making the data suitable for real-time artifact removal and for future ML applications. ⋯ Here, the authors developed a well-performing supervised model with external validation that can detect normal signals, artifacts, and drainages in ICP signals from patients in neurocritical care units. For future analyses, this is a powerful tool to discard artifacts or to detect drainage events in ICP monitoring signals.
-
We developed a noninvasive biomarker to quantify the rate of ventricular blood clearance in patients with intracerebral hemorrhage and extension to the ventricles-intraventricular hemorrhage. ⋯ In conclusion, vFA and vMD may serve as biomarkers for VBV status.
-
Journal of neurotrauma · Jun 2024
Observational StudyAssociation Between Early External Ventricular Drain Insertion And Functional Outcomes Six-months Following Moderate-to-Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) is a leading global cause of morbidity and mortality. Intracranial hypertension following moderate-to-severe TBI (m-sTBI) is a potentially modifiable secondary cerebral insult and one of the central therapeutic targets of contemporary neurocritical care. External ventricular drain (EVD) insertion is a common therapeutic intervention used to control intracranial hypertension and attenuate secondary brain injury. ⋯ Following adjustment for the IMPACT (International Mission for Prognosis and Analysis of Clinical Trials in TBI) score extended (Core + CT), sex, injury severity score, study and treatment site, patients receiving a late EVD had higher odds of death or severe disability (GOSE 1-4) at 6 months follow-up than those receiving an early EVD adjusted odds ratio; 95% confidence interval, 2.14; 1.22-3.76; p = 0.008. Our study suggests that in patients with m-sTBI where an EVD is needed, early (≤ 24 h post-injury) insertion may result in better long-term functional outcomes. This finding supports future prospective investigation in this area.