Articles: alpha-rhythm.
-
Randomized Controlled Trial
Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. ⋯ Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles.
-
Randomized Controlled Trial Comparative Study
The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception.
Why does neuronal activity in sensory brain areas sometimes give rise to perception, and sometimes not? Although neuronal noise is often invoked as the key factor, a portion of this variability could also be due to the history and current state of the brain affecting cortical excitability. Here we directly test this idea by examining whether the phase of prestimulus oscillatory activity is causally linked with modulations of cortical excitability and with visual perception. Transcranial magnetic stimulation (TMS) was applied over human visual cortex to induce illusory perceptions (phosphenes) while electroencephalograms (EEGs) were simultaneously recorded. ⋯ This effect was observed in occipital regions around the site of TMS, as well as in a distant frontocentral region. In both regions, we found a systematic relationship between prepulse EEG phase and perceptual performance: phosphene probability changed by ∼15% between opposite phases. In summary, we provide direct evidence for a chain of causal relations between the phase of ongoing oscillations, neuronal excitability, and visual perception: ongoing oscillations create periodic "windows of excitability," with sensory perception being more likely to occur at specific phases.
-
Randomized Controlled Trial Clinical Trial
Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effects of scopolamine in healthy volunteers.
Scopolamine is a muscarinic receptor antagonist commonly used as a pharmacological model substance based on the "cholinergic hypothesis" of memory loss in senile dementia of the Alzheimer type. The objective of the study was to relate pharmacodynamic electroencephalogram (EEG) changes and scopolamine serum concentration using pharmacokinetic-pharmacodynamic (PK-PD) modeling techniques. This was a randomized, three-way crossover, open-label study involving 10 healthy nonsmoking young male volunteers who received either scopolamine 0.5 mg as an intravenous (i.v.) infusion over 15 minutes or an intramuscular (i.m.) injection or a placebo. ⋯ No time delay between serum concentrations and changes in alpha power was observed, indicating a rapid equilibration between serum and effect site. The results provide the first demonstration of a direct correlation between serum concentrations of scopolamine and changes in total power in alpha frequency band in healthy volunteers using PK-PD modeling techniques. As regards the effect on the EEG, 0.5 mg of scopolamine administered i.v. appears to be a suitable dose.