Articles: mechanical-ventilation.
-
Review Meta Analysis
Bayesian analysis of a systematic review of early versus late tracheostomy in ICU patients.
A recent systematic review and meta-analysis of RCTs of early vs late tracheostomy in mechanically ventilated patients suggest that early tracheostomy reduces the duration of ICU stay and mechanical ventilation, but does not reduce short-term mortality or ventilator-associated pneumonia (VAP). Meta-analysis of randomised trials is typically performed using a frequentist approach, and although reporting confidence intervals, interpretation is usually based on statistical significance. To provide a robust basis for clinical decision-making, we completed the search used from the previous review and analysed the data using Bayesian methods to estimate posterior probabilities of the effect of early tracheostomy on clinical outcomes. ⋯ Bayesian meta-analysis suggests a high probability that early tracheostomy compared with delayed tracheostomy has at least some benefit across all clinical outcomes considered.
-
Eur. J. Clin. Invest. · Nov 2022
Meta AnalysisIn-hospital incidence of and risk factors for influenza associated respiratory failure.
Respiratory failure (RF) is the most important complication of influenza virus infection. Its definition and incidence are heterogeneous in the literature. ⋯ Respiratory failure is frequent in hospitalized influenza patients, especially in patients with pneumonia and since the 2009 pandemic, although its definition and reporting widely vary in the literature. This complicates its characterization and comparison between cohorts and with other respiratory viruses.
-
Mechanical ventilation is commonly used in the pediatric intensive care unit. This paper reviews studies of pediatric mechanical ventilation published in 2021. Topics include physiology, ventilator modes, alarms, disease states, airway suctioning, ventilator liberation, prolonged ventilation, and others.
-
Intrinsic PEEP during mechanical ventilation occurs when there is insufficient time for expiration to functional residual capacity before the next inspiration, resulting in air trapping. Increased expiratory resistance (RE), too rapid of a patient or ventilator breathing rate, or a longer inspiratory to expiratory time ratio (TI/TE) can all be causes of intrinsic PEEP. Intrinsic PEEP can result in increased work of breathing and patient-ventilator asynchrony (PVA) during patient-triggered breaths. We hypothesized that the difference between intrinsic PEEP and ventilator PEEP acts as an inspiratory load resulting in trigger asynchrony that needs to be overcome by increased respiratory muscle pressure (Pmus). ⋯ A passive lung model describes the development of increasing intrinsic PEEP with increasing RE at a given ventilator breathing rate. An active lung model shows how this can lead to trigger asynchrony since the Pmus needed to trigger a breath is greater with increased RE, as the inspiratory muscles must overcome intrinsic PEEP. This model will lend itself to the study of intrinsic PEEP engendered by a higher ventilator breathing rate, as well as higher TI/TE, and will be useful in ventilator simulation scenarios of PVA. The model also suggests that increasing ventilator PEEP to match intrinsic PEEP can improve trigger asynchrony through a reduction in RE.