Articles: mechanical-ventilation.
-
Curr Opin Crit Care · Jun 2022
ReviewThe weaning from mechanical ventilation: a comprehensive ultrasound approach.
Due to heart, lung and diaphragm interactions during weaning from mechanical ventilation, an ultrasound integrated approach may be useful in the detection of dysfunctions potentially leading to weaning failure. In this review, we will summarize the most recent advances concerning the ultrasound applications relevant to the weaning from mechanical ventilation. ⋯ The present review summarizes the potential role of ultrasonography in the weaning process. A multimodal integrated approach allows the clinician to comprehend the pathophysiological processes of weaning failure.
-
The characteristics and outcomes of adult patients with respiratory syncytial virus (RSV) infection who require ICU admission are poorly defined. Although several studies in adults with RSV infection have been published in recent years, they did not focus specifically on patients with critical illness. ⋯ Adult patients in the ICU with RSV infection differ from adult patients in the ICU with influenza in terms of comorbidities and characteristics at diagnosis. RSV infection was associated with high in-hospital mortality, approaching 25%. In multivariate analysis, RSV infection was associated with a similar odds of in-hospital death compared with influenza infection.
-
Semin Respir Crit Care Med · Jun 2022
Physiological and Pathophysiological Consequences of Mechanical Ventilation.
Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. ⋯ Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.
-
Most patients who are successfully resuscitated after cardiac arrest are initially comatose and require mechanical ventilation and other organ support in an ICU. Best practice has been to cool these patients and control their temperature at a constant value in the range of 32-36 oC for at least 24 h. But the certainty of the evidence for this practice is increasingly being challenged. This review will summarize the evidence on key aspects of temperature control in comatose postcardiac arrest patients. ⋯ We suggest actively preventing fever by targeting a temperature 37.5 oC or less for those patients who remain comatose following return of spontaneous circulation (ROSC) after cardiac arrest.
-
This paper provides a review of a selection of papers published in the Journal of Clinical Monitoring and Computing in 2020 and 2021 highlighting what is new within the field of respiratory monitoring. Selected papers cover work in pulse oximetry monitoring, acoustic monitoring, respiratory system mechanics, monitoring during surgery, electrical impedance tomography, respiratory rate monitoring, lung ultrasound and detection of patient-ventilator asynchrony.