Articles: mechanical-ventilation.
-
Background and Objectives: The routine daily chest X-ray (CXR) strategy is no longer recommended in intensive care unit (ICU) patients. However, it is difficult for intensivists to collectively accept the on-demand CXR strategy because of the ambiguous clinical criteria for conducting CXRs. This study evaluated the predictive value of the change in PaO2/FiO2 (PF ratio) for abnormal CXR findings in ICU patients after mechanical ventilation (MV). ⋯ Of the 558 CXRs (normal = 418, abnormal = 140) and PF ratios, the daily change in PF ratio had a significant predictive accuracy for abnormal CXR findings (AUROC = 0.741, p < 0.01). Conclusions: The change in PF ratio (the Youden index point: ≤-23) had a sensitivity of 65.7%, and a specificity of 79.9%. Based on these results, the daily change in the PF ratio could be utilized as a predictive indicator of abnormal CXRs in ICU patients after MV treatment.
-
Am. J. Respir. Crit. Care Med. · Feb 2022
Multicenter Study Meta Analysis Comparative StudyHigh Flow Nasal Oxygen for Severe Hypoxemia: Oxygenation Response and Outcome in COVID-19 Patients.
Rationale: The "Berlin definition" of acute respiratory distress syndrome (ARDS) does not allow inclusion of patients receiving high-flow nasal oxygen (HFNO). However, several articles have proposed that criteria for defining ARDS should be broadened to allow inclusion of patients receiving HFNO. Objectives: To compare the proportion of patients fulfilling ARDS criteria during HFNO and soon after intubation, and 28-day mortality between patients treated exclusively with HFNO and patients transitioned from HFNO to invasive mechanical ventilation (IMV). ⋯ Twenty-eight-day mortality in patients who remained on NIV was 1.6% (1/62), whereas in patients who transitioned from NIV to IMV, it was 44.9% (31/69) (P < 0.001). Overall mortality was 19.0% (35/184) and 24.4% (32/131) for HFNO and NIV, respectively (P = 0.2479). Conclusions: Broadening the ARDS definition to include patients on HFNO with PaO2/FiO2 ⩽300 may identify patients at earlier stages of disease but with lower mortality.
-
More than 230 million people have tested positive for severe acute respiratory syndrome-coronavirus-2 infection globally by September 2021. The infection affects primarily the function of the respiratory system, where ∼20% of infected individuals develop coronavirus-19 disease (COVID-19) pneumonia. This review provides an update on the pathophysiology of the COVID-19 acute lung injury. ⋯ This review summarises the fundamental pathophysiological features of COVID-19 in the context of the respiratory system. It provides an overview of the key clinical manifestations of COVID-19 pneumonia, including gas exchange impairment, altered pulmonary mechanics and implications of abnormal chemical and mechanical stimuli. It also critically discusses the clinical implications for mechanical ventilation therapy.
-
Review
Prediction Models for Severe Manifestations and Mortality due to COVID-19: A Systematic Review.
Throughout 2020, the coronavirus disease 2019 (COVID-19) has become a threat to public health on national and global level. There has been an immediate need for research to understand the clinical signs and symptoms of COVID-19 that can help predict deterioration including mechanical ventilation, organ support, and death. Studies thus far have addressed the epidemiology of the disease, common presentations, and susceptibility to acquisition and transmission of the virus; however, an accurate prognostic model for severe manifestations of COVID-19 is still needed because of the limited healthcare resources available. ⋯ Several prognostic models for COVID-19 were identified, with varying clinical score performance. Nine studies that had a low risk of bias and low concern for applicability, one from a general public population and hospital setting. The most promising and well-validated scores include Clift et al.,15 and Knight et al.,18 which seem to have accurate prediction models that clinicians can use in the public health and emergency department setting.
-
Journal of critical care · Feb 2022
Observational Study1-hour t-piece spontaneous breathing trial vs 1-hour zero pressure support spontaneous breathing trial and reintubation at day 7: A non-inferiority approach.
Physiological data suggest that T-piece and zero pressure support (PS0) ventilation both accurately reflect spontaneous breathing conditions after extubation. These two types of spontaneous breathing trials (SBTs) are used in our Intensive Care Unit to evaluate patients for extubation readiness and success but have rarely been compared in clinical studies. ⋯ Our results suggest that successful 1-hour T-piece and 1-h PSO ZEEP SBTs are associated with similar reintubation rates at day 7.