Articles: mechanical-ventilation.
-
The 2019 novel coronavirus (COVID-19) is an emerging pandemic, with a disease course varying from asymptomatic infection to critical disease resulting to death. Recognition of prognostic factors is essential because of its growing prevalence and high clinical costs. This meta-analysis aimed to evaluate the global prevalence of obesity in COVID-19 patients and to investigate whether obesity is a risk factor for the COVID-19, COVID-19 severity, and its poor clinical outcomes including hospitalization, intensive care unit (ICU) admission, need for mechanical ventilation, and mortality. ⋯ Level I, systematic reviews and meta-analyses.
-
Cardiovasc Diabetol · Jul 2021
Comparative Study Observational StudyStatins and clinical outcomes in hospitalized COVID-19 patients with and without Diabetes Mellitus: a retrospective cohort study with propensity score matching.
The pleiotropic effects of statins may reduce the severity of COVID-19 disease. This study aims to determine the association between inpatient statin use and severe disease outcomes among hospitalized COVID-19 patients, especially those with Diabetes Mellitus (DM). ⋯ Inpatient statin use was associated with significant reduction in mortality among COVID-19 patients especially those with DM. These findings support the pursuit of randomized clinical trials and inpatient statin use appears safe among COVID-19 patients.
-
BMC pulmonary medicine · Jul 2021
Application of bedside ultrasound in predicting the outcome of weaning from mechanical ventilation in elderly patients.
With the increased ageing of society, more and more elderly people are admitted to the intensive care unit, How to accurately predict whether elderly patients can successfully wean from the ventilator is more complicated. Diaphragmatic excursion (DE) and diaphragm thickening fraction (DTF) were measured by bedside ultrasound to assess diaphragm function. The lung ultrasound score (LUS) and the rapid shallow breathing index (RBSI) were used as indices of diaphragm function to predict the outcome of weaning from mechanical ventilation. The aim of this study was to examine the clinical utility of these parameters in predicting extubation success. ⋯ DTF has higher sensitivity and specificity for the prediction of successful weaning in elderly patients than the other parameters examined. The combination of RSBI, LUS, DE and DFT performed well in predicting weaning outcome. This has potentially important clinical application and merits further evaluation.
-
Current practices regarding tracheostomy in patients treated with extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome are unknown. Our objectives were to assess the prevalence and the association between the timing of tracheostomy (during or after ECMO weaning) and related complications, sedative, and analgesic use. ⋯ In contrast to patients undergoing tracheostomy after ECMO decannulation, tracheostomy during ECMO was neither associated with a decrease in sedation and analgesia levels nor with an increase in the level of consciousness. This finding together with a higher risk of local bleeding in the days following the procedure reinforces the need for a case-by-case discussion on the balance between risks and benefits of tracheotomy when performed during ECMO.
-
Tidal volume delivered by mechanical ventilation to a sedated patient is distributed in a nonphysiological pattern, causing atelectasis (underinflation) and overdistension (overinflation). Activation of the diaphragm during controlled mechanical ventilation in these sedated patients may provide a method to reduce atelectasis and alveolar inhomogeneity, protecting the lungs from ventilator-induced lung injury while also protecting the diaphragm by preventing ventilator-induced diaphragm dysfunction. We studied the hypothesis that diaphragm contractions elicited by transvenous phrenic nerve stimulation, delivered in synchrony with volume-control ventilation, would reduce atelectasis and lung inhomogeneity in a healthy, normal lung pig model. ⋯ NEW & NOTEWORTHY Temporary transvenous diaphragm neurostimulation has been shown to mitigate diaphragm atrophy in a preclinical model. This study contributes to this work by demonstrating that diaphragm neurostimulation can also offer lung protection from ventilator injury, providing a potential solution to the dilemma of lung- versus diaphragm-protective ventilation. Our findings show that neurostimulation on every breath preserved [Formula: see text]/[Formula: see text], end-expiratory lung volume, alveolar homogeneity, and required lower pressures than lung-protective ventilation over 50 h in healthy pigs.