Articles: mechanical-ventilation.
-
Transpulmonary pressure (PL) is used to assess pulmonary mechanics and guide lung-protective mechanical ventilation (LPV). PL is recommended to individualize LPV settings for patients with high pleural pressures and hypoxemia. We aimed to determine whether PL-guided LPV settings, pulmonary mechanics, and oxygenation improve and differ from non-PL-guided LPV among obese patients after 24 h on mechanical ventilation. Secondary outcomes included classification of hypoxemia severity, count of ventilator-free days, ICU length of stay, and overall ICU mortality. ⋯ PL-guided LPV resulted in higher PEEP, lower [Formula: see text], improved pulmonary mechanics, and greater oxygenation when compared to non-PL-guided LPV settings in adult obese subjects.
-
Acute respiratory failure is among the sequelae of complications that can develop in response to severe sepsis. Research into sepsis-related respiratory failure has focused on ARDS and invasive mechanical ventilation. We studied the factors associated with success and failure of noninvasive ventilation (NIV) in the treatment of sepsis-related acute respiratory failure. ⋯ NIV failure in sepsis-related acute respiratory failure was independently predicted by patient acuity, first systolic blood pressure after sepsis alert, initial [Formula: see text] settings on NIV, fluid resuscitation, and signs of volume overload. However, only NIV failure independently predicted death in this cohort of subjects.
-
Somewhere between 30% and 89% of patients with COVID-19 admitted to a critical care unit require invasive mechanical ventilation. Concern over the lack of adequate numbers of critical care ventilators to meet this demand led the U. ⋯ The use of anesthesia machines for ventilating patients with COVID-19 is overseen by an anesthesia provider, but respiratory therapists may encounter their use. This article reviews the fundamental differences between anesthesia machines and critical care ventilators, as well as some common problems encountered when using an anesthesia machine to ventilate a patient with COVID-19 and steps to mitigate these problems.
-
COVID-19 resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of respiratory failure previously unencountered. Early in the pandemic, concentrated infections in high-density population cities threatened to overwhelm health systems, and ventilator shortages were predicted. An early proposed solution was the use of shared ventilation, or the use of a single ventilator to support ≥ 2 patients. ⋯ Prior to 2020, there were 7 publications on this topic. A year later, more than 40 publications have addressed the technical details for shared ventilation, clinical experience with shared ventilation, as well as the numerous limitations and ethics of the technique. This is a review of the literature regarding shared ventilation from peer-reviewed articles published in 2020.