Articles: mechanical-ventilation.
-
During the COVID-19 pandemic, a need for innovative, inexpensive, and simple ventilator devices for mass use has emerged. The Oxylator (CPR Medical Devices, Markham, Ontario, Canada) is an FDA-approved, fist-size, portable ventilation device developed for out-of-hospital emergency ventilation. It has not been tested in conditions of severe lung injury or with added PEEP. We aimed to assess the performance and reliability of the device in simulated and experimental conditions of severe lung injury, and to derive monitoring methods to allow the delivery of safe, individualized ventilation during situations of surge. ⋯ The Oxylator is a simple device that delivered stable ventilation with tidal volumes within a clinically acceptable range in bench and porcine lung models with low compliance. External monitoring of respiratory timing is advisable, allowing tidal volume estimation and recognition of changes in respiratory mechanics. The device can be an efficient, low-cost, and practical rescue solution for providing short-term ventilatory support as a temporary bridge, but it requires a caregiver at the bedside.
-
Limited adult data suggest that airway driving pressure might better reflect the potential risk for lung injury than tidal volume based on ideal body weight, and the parameter correlates with mortality in ARDS. There is a lack of data about the effect of driving pressure on mortality in pediatric ARDS. This study aimed to evaluate the effect of driving pressure on morbidity and mortality of children with acute hypoxemic respiratory failure. ⋯ Below a threshold of 15 cm H2O, ΔP was associated with significantly decreased morbidity in children with acute hypoxemic respiratory failure.
-
High-flow nasal cannula (HFNC) is an option for respiratory support in patients with acute hypoxic respiratory failure. To improve patient outcomes, reduce ICU-associated costs, and ease ICU bed availability, a multi-phased, comprehensive strategy was implemented to make HFNC available outside the ICU under the supervision of pulmonology or trauma providers in cooperation with a dedicated respiratory therapy team. The purpose of this study was to describe the education and implementation process for initiating HFNC therapy outside the ICU and to convey key patient demographics and outcomes from the implementation period. ⋯ A comprehensive implementation process and a robust therapy protocol were integral to initiating and managing HFNC in all hospital locations. Study findings indicate that patients with acute hypoxic respiratory failure can safely receive HFNC therapy outside the ICU with appropriate patient selection and staff education.
-
Intensive care medicine · Mar 2021
ReviewRespiratory microbiome in mechanically ventilated patients: a narrative review.
The respiratory microbiome has been less explored than the gut microbiome. Despite the speculated importance of dysbiosis of the microbiome in ventilator-associated pneumonia (VAP) and acute respiratory distress syndrome (ARDS), only few studies have been performed in invasively ventilated ICU patients. And only the results of small cohorts have been published. ⋯ Priority should be given to validate a consensual and robust methodology for respiratory microbiome research and to conduct longitudinal studies. A deeper understanding of microbial interplay should be a valuable guide for care of ARDS and VAP preventive/therapeutic strategies. We present a review on the current knowledge and expose perspectives and potential clinical applications of respiratory microbiome research in mechanically ventilated patients.
-
Acta Anaesthesiol Scand · Mar 2021
Observational StudyA single-centre, prospective cohort study of COVID-19 patients admitted to ICU for mechanical ventilatory support.
Mortality rates in COVID-19 patients in need of mechanical ventilation are high, with wide variations between countries. Most studies were retrospective, and results may not be generalizable due to differences in demographics, healthcare organization and surge capacity. We present a cohort of mechanically ventilated COVID-19 patients from a resource-rich, publicly financed healthcare system. ⋯ In a prospective cohort study of mechanically ventilated COVID-19 patients treated in a resource-rich, publicly financed healthcare system, mortality was considerably lower than previously reported in retrospective studies.