Articles: mechanical-ventilation.
-
Review
Prediction Models for Severe Manifestations and Mortality due to COVID-19: A Systematic Review.
Throughout 2020, the coronavirus disease 2019 (COVID-19) has become a threat to public health on national and global level. There has been an immediate need for research to understand the clinical signs and symptoms of COVID-19 that can help predict deterioration including mechanical ventilation, organ support, and death. Studies thus far have addressed the epidemiology of the disease, common presentations, and susceptibility to acquisition and transmission of the virus; however, an accurate prognostic model for severe manifestations of COVID-19 is still needed because of the limited healthcare resources available. ⋯ Several prognostic models for COVID-19 were identified, with varying clinical score performance. Nine studies that had a low risk of bias and low concern for applicability, one from a general public population and hospital setting. The most promising and well-validated scores include Clift et al.,15 and Knight et al.,18 which seem to have accurate prediction models that clinicians can use in the public health and emergency department setting.
-
More than 230 million people have tested positive for severe acute respiratory syndrome-coronavirus-2 infection globally by September 2021. The infection affects primarily the function of the respiratory system, where ∼20% of infected individuals develop coronavirus-19 disease (COVID-19) pneumonia. This review provides an update on the pathophysiology of the COVID-19 acute lung injury. ⋯ This review summarises the fundamental pathophysiological features of COVID-19 in the context of the respiratory system. It provides an overview of the key clinical manifestations of COVID-19 pneumonia, including gas exchange impairment, altered pulmonary mechanics and implications of abnormal chemical and mechanical stimuli. It also critically discusses the clinical implications for mechanical ventilation therapy.
-
Curr Opin Crit Care · Feb 2022
Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients.
We conducted a systematic literature review to summarize the available evidence regarding the incidence, risk factors, and clinical characteristics of ventilator-associated pneumonia (VAP) in patients undergoing mechanical ventilation because of acute respiratory distress syndrome secondary to SARS-CoV-2 infection (C-ARDS). ⋯ Covid-19 patients who require mechanical ventilation for ARDS have a high risk (>50%) of developing VAP, most commonly because of Gram-negative bacteria. Further work is needed to elucidate the disease-specific risk factors for VAP, strategies for prevention, and how best to differentiate between bacterial colonization versus superinfection.
-
Journal of critical care · Feb 2022
Review Meta AnalysisDiagnostic and prognostic prediction models in ventilator-associated pneumonia: Systematic review and meta-analysis of prediction modelling studies.
Existing expert systems have not improved the diagnostic accuracy of ventilator-associated pneumonia (VAP). The aim of this systematic literature review was to review and summarize state-of-the-art prediction models detecting or predicting VAP from exhaled breath, patient reports and demographic and clinical characteristics. ⋯ PROSPERO CRD42020180218, registered on 05-07-2020.
-
Review
Potential benefits of melatonin to control pain in ventilated preterm newborns: an updated review.
Infants admitted to neonatal intensive care units are repeatedly stimulated by painful events, especially if intubated. Preterm infants are known to have greater pain perception than full term infants due to immaturity of descending inhibitory circuits and poor noxious inhibitory modulation. Newborns exposed to repetitive painful stimuli are at high risk of impairments in brain development and cognition. ⋯ Besides, this review addresses safety concerns and dosages. The potential benefits of melatonin have been assessed against neurological disorders, respiratory distress, microbial infections, and as analgesic adjuvant during ventilation. Additionally, a possible approach for the use of melatonin in ventilated newborns will be discussed.