Articles: mechanical-ventilation.
-
Review
Hospital-onset sepsis warrants expanded investigation and consideration as a unique clinical entity.
Sepsis causes more than a quarter million deaths among hospitalized adults in the United States each year. Although most cases of sepsis are present on admission, up to one-quarter of patients with sepsis develop this highly morbid and mortal condition while hospitalized. Compared with patients with community-onset sepsis (COS), patients with hospital-onset sepsis (HOS) are twice as likely to require mechanical ventilation and ICU admission, have more than two times longer ICU and hospital length of stay, accrue five times higher hospital costs, and are twice as likely to die. ⋯ Despite the differences between these patient populations, patients with HOS sepsis are understudied and warrant expanded investigation. Here, we outline important knowledge gaps in the recognition and management of HOS in adults and propose associated research priorities for investigators. Of particular importance are questions regarding standardization of research and clinical case identification, understanding of clinical heterogeneity among patients with HOS, development of tailored management recommendations, identification of impactful prevention strategies, optimization of care delivery and quality metrics, identification and correction of disparities in care and outcomes, and how to ensure goal-concordant care for patients with HOS.
-
Journal of anesthesia · Jun 2024
Ultrasonographic evaluation of diaphragm thickness and excursion: correlation with weaning success in trauma patients: prospective cohort study.
Prolonged mechanical ventilation (MV) subjects multiple trauma patients to ventilator-induced diaphragmatic dysfunction. There is limited evidence on the predictive role of diaphragm ultrasound (DUS) for weaning success in multiple trauma patients. Therefore, we evaluated Ultrasound of the diaphragm as a valuable indicator of weaning outcomes, in trauma patients. ⋯ In the context of patients with multiple trauma, employing DUC and assessing diaphragmatic excursion, thickness, RR/DE index, RR/TF index, and RSBI can aid in determining successful ventilator weaning.
-
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. ⋯ This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
-
Review Meta Analysis
Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis.
Background and objectives: Mechanical ventilation is often used in intensive care units to assist patients' breathing. This often leads to respiratory muscle weakness and diaphragmatic dysfunction, causing weaning difficulties. Inspiratory muscle training (IMT) has been found to be beneficial in increasing inspiratory muscle strength and facilitating weaning. ⋯ Additionally, no statistical difference was noticed in the duration of mechanical ventilation. The application of IMT is recommended to ICU patients in order to prevent diaphragmatic dysfunction and facilitate weaning from mechanical ventilation. Therefore, further research as well as additional RCTs regarding different protocols are needed to enhance its effectiveness.
-
Tidal expiratory flow limitation (EFLT) complicates the delivery of mechanical ventilation but is only diagnosed by performing specific manoeuvres. Instantaneous analysis of expiratory resistance (Rex) can be an alternative way to detect EFLT without changing ventilatory settings. This study aimed to determine the agreement of EFLT detection by Rex analysis and the PEEP reduction manoeuvre using contingency table and agreement coefficient. The patterns of Rex were explored. ⋯ The Rex method shows an excellent agreement with the PEEP reduction manoeuvre and allows real-time detection of EFLT. Two subtypes of EFLT are identified by Rex analysis.