Articles: mechanical-ventilation.
-
Intensive Care Med Exp · Dec 2015
Atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in rats.
Patients with acute respiratory distress syndrome receiving mechanical ventilation show inhomogeneous lung aeration. Atelectasis during uneven mechanical ventilation leads to alveolar hypoxia and could therefore result in lung inflammation and injury. We aimed to elucidate whether and how atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in an open-chest differential-ventilation rat model. ⋯ Atelectasis causes alveolar hypoxia-induced inflammatory responses including NF-κB-dependent CXCL-1 secretion from lung epithelial cells. HIF-1 activation in lung epithelial cells is an anti-inflammatory response to alveolar hypoxia in atelectatic lungs.
-
High tidal volume can cause ventilator-induced lung injury (VILI), but positive end-expiratory pressure (PEEP) is thought to be protective. We aimed to find the volumetric VILI threshold and see whether PEEP is protective per se or indirectly. ⋯ The threshold for VILI is the lower limit of inspiratory capacity. Below this threshold, VILI does not occur. Within these limits, severe/lethal VILI occurs depending on the dynamic component. Above inspiratory capacity stress at rupture may occur. In healthy lungs, PEEP is protective only if associated with a reduced tidal volume; otherwise, it has no effect or is harmful.
-
Protective lung ventilation requires calculating predicted body weight (BW) from height. Thus, inaccuracy of height data in the electronic health record (EHR) is a risk factor for ventilator-induced lung injury. Charted height data often have uncertain accuracy. Study purposes were (1) to evaluate the difference between patient height charted in the EHR and predicted height (PH) from ulnar length and (2) to determine how the height data source affects predicted BW and the resulting values for protective tidal volume (V(T)). ⋯ For overall populations, mean height calculated from values charted in the EHR is similar to that estimated from ulnar length. However, for individuals, differences in height between the 2 sources can be large, leading to large differences in predicted BW and resultant V(T) set in terms of mL/kg.
-
Annals of intensive care · Dec 2015
Acute respiratory failure in patients with hematological malignancies: outcomes according to initial ventilation strategy. A groupe de recherche respiratoire en réanimation onco-hématologique (Grrr-OH) study.
In patients with hematological malignancies and acute respiratory failure (ARF), noninvasive ventilation was associated with a decreased mortality in older studies. However, mortality of intubated patients decreased in the last years. In this study, we assess outcomes in those patients according to the initial ventilation strategy. ⋯ gov number NCT 01172132.
-
Annals of intensive care · Dec 2015
Continuous control of tracheal cuff pressure for VAP prevention: a collaborative meta-analysis of individual participant data.
Underinflation of tracheal cuff is a risk factor for microaspiration of contaminated secretions and subsequent ventilator-associated pneumonia (VAP). The aim of this collaborative meta-analysis of individual participant data is to determine the impact of continuous control of P cuff on the incidence of VAP. ⋯ Continuous control of P cuff might be beneficial in reducing the risk for VAP. However, no significant impact of continuous control of P cuff was found on duration of mechanical ventilation, ICU length of stay, or mortality.