Articles: biological-evolution.
-
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. ⋯ Metabolic factors that are positively selected in response to the specific environment of CF lung include the outer membrane protein OprF, the microaerophilic oxidase Cbb3-2, the blue copper protein azurin, the cytochrome c peroxidase c551 and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic adaptations probably support the growth of P. aeruginosa within oxygen-depleted CF mucus. The deeper understanding of the physiological mechanisms of niche specialization of P. aeruginosa during CF lung infection will help to identify new targets for future anti-pseudomonal treatment strategies to prevent the selection of mutator isolates and the establishment of chronic CF lung infection.
-
Although the forces behind the evolution of imperfect mimicry remain poorly studied, recent hypotheses suggest that relaxed selection on small-bodied individuals leads to imperfect mimicry. While evolutionary history undoubtedly affects the development of imperfect mimicry, ecological community context has largely been ignored and may be an important driver of imperfect mimicry. ⋯ However, in Müllerian velvet ants we find a weak positive relationship between body size and mimetic fidelity when evolutionary context is controlled for and a much stronger relationship between community diversity and mimetic fidelity. These results suggest that reduced selection on small-bodied individuals may not be a major driver of the evolution of imperfect mimicry and that other factors, such as ecological community context, should be considered when studying the evolution of imperfect mimicry.
-
The biological and medical importance of epigenetics is nowtaken for granted, but the significance of one aspect of it—epigenetic inheritance—is less widely recognized. New datasuggest that not only is it ubiquitous, but both the generationand the transmission of epigenetic variations may be affectedby developmental conditions. Population studies, formalmodels, and research on genomic and ecological stressesall suggest that epigenetic inheritance is important in bothmicro-and macroevolutionary change.
-
Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution.
Scapular morphology is predictive of locomotor adaptations among primates, but this skeletal element is scarce in the hominin fossil record. Notably, both scapulae of the juvenile Australopithecus afarensis skeleton from Dikika, Ethiopia, have been recovered. These scapulae display several traits characteristic of suspensory apes, as do the few known fragmentary adult australopith representatives. ⋯ Thus, the similarity of juvenile and adult fossil morphologies implies that A. afarensis development was apelike. Additionally, changes in other scapular traits throughout African ape development are associated with shifts in locomotor behavior. This affirms the functional relevance of those characteristics, and their presence in australopith fossils supports the hypothesis that their locomotor repertoire included a substantial amount of climbing.