Articles: biological-evolution.
-
Comparative Study
Differential rates of morphological divergence in birds.
There are more small-bodied bird species than there are large-bodied, even on a logarithmic scale. In birds this pattern, which is also found in other higher taxa, appears not to be due to neutral evolution. It has often been suggested that the skew of body size frequency distributions is the result of a relationship between body size and the net rate of speciation, but phylogenetic analyses so far have rejected the hypothesis that small-bodied species are subject to higher net rates of speciation. On the contrary, we show that there exists a relationship between body size and its own evolutionary variability: avian families of small body size show less interspecific variation in body size than large-bodied families of similar age and species richness.
-
Although the conditions under which altruistic behaviors evolve continue to be vigorously debated, there is general agreement that altruistic traits involving an absolute cost to altruists (strong altruism) cannot evolve when populations are structured with randomly formed groups. This conclusion implies that the evolution of such traits depends upon special environmental conditions or additional organismic capabilities that enable altruists to interact with each other more than would be expected with random grouping. Here we show, using both analytic and simulation results, that the positive assortment necessary for strong altruism to evolve does not require these additional mechanisms, but merely that randomly formed groups exist for more than one generation. ⋯ Until now random group formation models have neglected the significance of multigenerational groups-even though such groups are a central feature of classic "haystack" models of the evolution of altruism. We also explore the important role that stochasticity (effectively absent in the original infinite models) plays in the evolution of altruism. The fact that strong altruism can increase when groups are periodically and randomly formed suggests that altruism may evolve more readily and in simpler organisms than is generally appreciated.
-
Although very common under natural conditions, the consequences of multiple enemies (parasites, predators, herbivores, or even 'chemical' enemies like insecticides) on investment in defence has scarcely been investigated. In this paper, we present a simple model of the joint evolution of two defences targeted against two enemies. We illustrate how the respective level of each defence can be influenced by the presence of the two enemies. ⋯ It is generally admitted that increasing the encounter rate with a second natural enemy can decrease investment in defence against a first enemy, but our results indicate that it may sometimes favour resistance against the first enemy. Moreover, we illustrate that the global defence against one enemy can be lower when only this enemy is present: this has important implications for experimental measures of resistance, and for organisms that invade an area with less enemies or whose community of enemies is reduced. We discuss possible implications of the existence of multiple enemies for conservation biology, biological control and chemical control.