Articles: oligonucleotides.
-
Randomized Controlled Trial
Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study.
Duchenne muscular dystrophy is caused by dystrophin deficiency and muscle deterioration and preferentially affects boys. Antisense-oligonucleotide-induced exon skipping allows synthesis of partially functional dystrophin. We investigated the efficacy and safety of drisapersen, a 2'-O-methyl-phosphorothioate antisense oligonucleotide, given for 48 weeks. ⋯ GlaxoSmithKline, Prosensa Therapeutics BV (a subsidiary of Prosensa Holding NV).
-
Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused primarily by mutations in the low-density lipoprotein receptor gene. Familial hypercholesterolemia is characterized by exceedingly high levels of low-density lipoprotein cholesterol (LDL-C) and subsequent premature coronary heart disease. Homozygous FH (HoFH) is less prevalent, but more severe, than heterozygous FH. Current treatment options include dietary therapy, lipid-lowering agents (eg, statins), and/or LDL-C apheresis. ⋯ These new agents offer additional treatment options for clinicians managing patients with HoFH, but it remains uncertain whether lomitapide and mipomersen will gain FDA approval for use in patients with heterozygous FH or in the general population. Cost and concern for the risk for hepatotoxicity will remain limiting factors to these agents being more widely used.
-
Randomized Controlled Trial Multicenter Study Comparative Study
Vein graft preservation solutions, patency, and outcomes after coronary artery bypass graft surgery: follow-up from the PREVENT IV randomized clinical trial.
In vitro and animal model data suggest that intraoperative preservation solutions may influence endothelial function and vein graft failure (VGF) after coronary artery bypass graft (CABG) surgery. Clinical studies to validate these findings are lacking. ⋯ Patients undergoing CABG whose vein grafts were preserved in a buffered saline solution had lower VGF rates and trends toward better long-term clinical outcomes compared with patients whose grafts were preserved in saline- or blood-based solutions.
-
Although prostate cancer responds initially to androgen ablation therapies, progression to castration-resistant prostate cancer (CRPC) frequently occurs. Heat shock protein (Hsp) 90 inhibition is a rational therapeutic strategy for CRPC that targets key proteins such as androgen receptor (AR) and protein kinase B (Akt); however, most Hsp90 inhibitors trigger elevation of stress proteins like Hsp27 that confer tumor cell survival and treatment resistance. ⋯ This study supports the development of targeted strategies using OGX-427 in combination with Hsp90 inhibitors to improve patient outcome in CRPC.
-
Expert Opin Biol Ther · Jun 2014
ReviewNew developments in exon skipping and splice modulation therapies for neuromuscular diseases.
Antisense oligonucleotide (AON) therapy is a form of treatment for genetic or infectious diseases using small, synthetic DNA-like molecules called AONs. Recent advances in the development of AONs that show improved stability and increased sequence specificity have led to clinical trials for several neuromuscular diseases. Impressive preclinical and clinical data are published regarding the usage of AONs in exon-skipping and splice modulation strategies to increase dystrophin production in Duchenne muscular dystrophy (DMD) and survival of motor neuron (SMN) production in spinal muscular atrophy (SMA). ⋯ The main approach of AON therapy in DMD and SMA is to rescue ('knock up' or increase) target proteins through exon skipping or exon inclusion; conversely, most conventional antisense drugs are designed to knock down (inhibit) the target. Encouraging preclinical data using this 'knock up' approach are also reported to rescue dysferlinopathies, including limb-girdle muscular dystrophy type 2B, Miyoshi myopathy, distal myopathy with anterior tibial onset and Fukuyama congenital muscular dystrophy.