Articles: oligonucleotides.
-
Randomized Controlled Trial Multicenter Study
Treatment of HCV infection by targeting microRNA.
The stability and propagation of hepatitis C virus (HCV) is dependent on a functional interaction between the HCV genome and liver-expressed microRNA-122 (miR-122). Miravirsen is a locked nucleic acid-modified DNA phosphorothioate antisense oligonucleotide that sequesters mature miR-122 in a highly stable heteroduplex, thereby inhibiting its function. ⋯ The use of miravirsen in patients with chronic HCV genotype 1 infection showed prolonged dose-dependent reductions in HCV RNA levels without evidence of viral resistance. (Funded by Santaris Pharma; ClinicalTrials.gov number, NCT01200420.).
-
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the DMD gene, affecting 1 in 3500 newborn males. Complete loss of muscle dystrophin protein causes progressive muscle weakness and heart and respiratory failure, leading to premature death. Antisense oligonucleotides (AONs) that bind to complementary sequences of the dystrophin pre-mRNA to induce skipping of the targeted exon by modulating pre-mRNA splicing are promising therapeutic agents for DMD. ⋯ Within the last few years, clinical trials using AONs have made considerable progress demonstrating the restoration of functional dystrophin protein and acceptable safety profiles following both local and systemic delivery in DMD patients. However, improvement of AON delivery and efficacy, along with the development of multiple AONs to treat as many DMD patients as possible needs to be addressed for this approach to fulfill its potential. Here, we review the recent progress made in clinical trials using AONs to treat DMD and discuss the current challenges to the development of AON-based therapy for DMD.
-
Spinal muscular atrophy (SMA) is an autosomal recessive disease affecting ∼1 in 10,000 live births. The most striking component is the loss of α-motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment paradigm other than supportive care, though the past 15 years has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. ⋯ SMA can therefore be considered a disease of too little SMN protein. A number of cis-acting splice modifiers have been identified in the region of exon 7, the steric block of which enhances the retention of the exon and a resultant full-length mRNA sequence. ASOs targeted to these splice motifs have shown impressive phenotype rescue in multiple SMA mouse models.