Articles: oligonucleotides.
-
To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. ⋯ Here, we make use of modified 2'-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)(7), also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.
-
Tetrodotoxin-resistant (TTX-R) sodium channels Na(V)1.8 and Na(V)1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported Na(V)1.8, roles of Na(V)1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting Na(V)1.8 and Na(V)1.9 on inflammatory pain. ⋯ Intrathecal (i.t.) delivery of AS ODN was used to down-regulate Na(V)1.8 or Na(V)1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only Na(V)1.8 AS ODN, but not Na(V)1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels Na(V)1.8 and Na(V)1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain.
-
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. ⋯ We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
-
Existing anticoagulants effectively inhibit the activity of coagulation factors of the extrinsic and common pathway but have substantial limitations and can cause severe bleeding complications. Here we describe a novel therapeutic approach to thrombosis treatment. We have developed and characterized the efficacy and safety of selective second-generation antisense oligonucleotides (ASOs) targeting coagulation factor XI (FXI), a member of the intrinsic coagulation pathway. ⋯ Coadministration of FXI ASO with enoxaparin or the antiplatelet drug clopidogrel produced improved antithrombotic activity without increased bleeding. Finally, plasma-derived FXI concentrate was shown to effectively and rapidly reverse the anticoagulant effect of FXI antisense therapy. These results support the concept that inhibition of FXI through antisense therapy might serve as a new and effective strategy for the treatment and prevention of venous thromboembolism with improved specificity and safety.
-
Targeted splice modulation of pre-mRNA transcripts by antisense oligonucleotides (AOs) can correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) arises as a result of mutations that interrupt the open-reading frame in the DMD gene encoding dystrophin such that dystrophin protein is absent, leading to fatal muscle degeneration. AOs have been shown to correct this dystrophin defect via exon skipping to yield functional dystrophin protein in animal models of DMD and also in DMD patients via intramuscular administration. To advance this therapeutic method requires increased exon skipping efficiency via an optimized AO sequence, backbone chemistry and additional modifications, and the improvement of methods for evaluating AO efficacy. ⋯ In vitro screening of different AOs within the same chemical class is a reliable method for predicting the in vivo exon skipping efficiency of AOs for DMD.