Articles: oligonucleotides.
-
Bcl-2 has emerged as a critical regulator of apoptosis in a variety of cell systems and is up-regulated during progression to androgen independence in prostate cancer cells. The objectives of this study were to characterize changes in Bcl-2 after androgen withdrawal and during progression to androgen independence in the human prostate LNCaP tumor model and determine whether adjuvant use of antisense Bcl-2 oligodeoxynucleotides (ODNs) with androgen ablation delays progression to androgen independence. Bcl-2 expression in LNCaP cells is down-regulated to undetectable levels by androgen in vitro and up-regulated after castration in vivo. ⋯ After decreasing 70% by 1 week after castration, PSA increased 1.6-fold above precastrate levels by 11 weeks in controls while staying 30% below precastrate levels in antisense-treated mice. In a second group of experiments, LNCaP tumor growth and serum PSA levels were 90% lower (P<0.01) in mice treated with antisense Bcl-2 ODN compared with mismatch or reverse polarity ODN controls. These results support the hypothesis that Bcl-2 helps mediate progression to androgen independence and is an appropriate target for antisense therapy.
-
Pharmaceutical research · Aug 1999
Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of Ha-ras encapsulated in stealth liposomes.
This study examined the pharmacokinetics and tissue distribution of an antisense oligonucleotide ISIS 2503, formulated in stealth (pegylated) liposomes (encapsulated) or in phosphate-buffered saline (unencapsulated). ⋯ The data suggest that stealth liposomes protect ISIS 2503 from nucleases in blood and tissues, slow tissue uptake, and slow the rate of clearance from the systemic circulation. These attributes may make these formulations attractive for delivering oligonucleotides to sites with increased vasculature permeability such as tumors or sites of inflammation.
-
Neuromuscul. Disord. · Jul 1999
Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.
The mdx mouse, which carries a nonsense mutation in exon 23 of the dystrophin gene, has been used as an animal model of Duchenne muscular dystrophy to evaluate cell or gene replacement therapies. Despite the mdx mutation, which should preclude the synthesis of a functional dystrophin protein, rare, naturally occurring dystrophin-positive fibres have been observed in mdx muscle tissue. These dystrophin-positive fibres are thought to have arisen from an exon-skipping mechanism, either somatic mutations or alternative splicing. ⋯ Approximately 50% of the dystrophin gene mRNAs were missing this exon 6 h after transfection of primary mdx myotubes, with all transcripts showing skipping of exon 23 after 24 h. Deletion of exon 23 does not disrupt the reading frame and should allow the synthesis of a shorter but presumably functional Becker-like dystrophin. Molecular intervention at dystrophin pre-mRNA splicing has the potential to reduce the severity of a Duchenne mutation to the milder Becker phenotype.
-
Antisense oligonucleotides offer the promise of therapeutic effect with few toxic effects, by virtue of their high selectivity. Preclinical studies have provided evidence of antisense effects in vitro and in vivo, and phase I clinical trials have demonstrated safety, feasibility and activity of antisense oligonucleotides for the treatment of cancer. This review summarizes the status of development of three anticancer antisense oligonucleotides from ISIS Pharmaceuticals.
-
Toxicologic pathology · Jan 1999
ReviewCorrelation of toxicity and pharmacokinetic properties of a phosphorothioate oligonucleotide designed to inhibit ICAM-1.
ISIS 2302 is a phosphorothioate oligodeoxynucleotide with a sequence complementary to the mRNA of human intercellular adhesion molecule 1 (ICAM-1). Hybridization of ISIS 2302 to the mRNA inhibits expression of the ICAM-1 protein in response to inflammatory stimuli. A murine active antisense oligonucleotide, ISIS 3082, has been used for in vivo pharmacology studies and has anti-inflammatory activity in models of organ transplant rejection, ulcerative colitis, and collagen-induced arthritis at doses ranging from 0.03 to 5 mg/kg. ⋯ In monkeys, high concentrations of oligonucleotide caused a transient increase in clotting times and activation of the alternative complement pathway. All toxicities associated with ISIS 2302 were reversible and occurred at doses well above those required for pharmacologic activity or currently used in clinical trials. In addition, there has been no evidence of genetic toxicity associated with ISIS 2302, and no changes in reproductive performance, fertility, or fetal development have been noted in animals treated with ISIS 2302 or ISIS 3082.