Articles: pandemics.
-
Int. J. Antimicrob. Agents · May 2020
Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection.
The recent emergence of the novel pathogenic SARS-coronavirus 2 (SARS-CoV-2) is responsible for a worldwide pandemic. Given the global health emergency, drug repositioning is the most reliable option to design an efficient therapy for infected patients without delay. The first step of the viral replication cycle [i.e. attachment to the surface of respiratory cells, mediated by the spike (S) viral protein] offers several potential therapeutic targets. ⋯ This study showed that, in the presence of CLQ [or its more active derivative, hydroxychloroquine (CLQ-OH)], the viral S protein is no longer able to bind gangliosides. The identification of this new mechanism of action of CLQ and CLQ-OH supports the use of these repositioned drugs to cure patients infected with SARS-CoV-2. The in-silico approaches used in this study might also be used to assess the efficiency of a broad range of repositioned and/or innovative drug candidates before clinical evaluation.
-
As many countries begin to lift some of the restrictions to contain COVID-19 spread, lack of evidence of transmission in the school setting remains. We examined Irish notifications of SARS-CoV2 in the school setting before school closures on 12 March 2020 and identified no paediatric transmission. This adds to current evidence that children do not appear to be drivers of transmission, and we argue that reopening schools should be considered safe accompanied by certain measures.