Articles: signal-transducing-adaptor-proteins.
-
Cervical cancer is the second most common malignancy in women, with nearly half a million new cases diagnosed each year worldwide. The authors' recent studies have suggested an association of the cancer testis antigen sperm-associated antigen 9 (SPAG9) in ovarian carcinomas. The aim of the current study was to evaluate the clinical utility of SPAG9 expression and humoral immune response in cervical carcinomas. ⋯ The current study findings revealed that in early stage cervical cancer, a substantial number of patients exhibited SPAG9 expression and generated SPAG9 antibodies, supporting its potential role in early detection and diagnosis in cervical cancer management. Furthermore, these findings provide leads for future development of noninvasive serologic biomarkers for the early detection, diagnosis, and treatment of cervical cancer.
-
Toll-like receptor 4 (TLR4) signals the induction of transcription factor IRF3-dependent genes from the early endosome via the adaptor TRAM. Here we report a splice variant of TRAM, TAG ('TRAM adaptor with GOLD domain'), which has a Golgi dynamics domain coupled to TRAM's Toll-interleukin 1 receptor domain. After stimulation with lipopolysaccharide, TRAM and TAG localized to late endosomes positive for the GTPase Rab7a. ⋯ TAG displaced the adaptor TRIF from TRAM. TAG is therefore an example of a specific inhibitor of the adaptor MyD88-independent pathway activated by TLR4. Targeting TAG could be useful in the effort to boost the immunostimulatory effect of TLR4 without causing unwanted inflammation.
-
Mutations that affect the Z-disk-associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. ⋯ Reducing alpha-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and alpha-actinin function in the same cellular process. Like alpha-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and alpha-actinin function together to stabilize actin filaments and promote muscle structural integrity.
-
QT interval prolongation is associated with increased risk of sudden cardiac death at the population level. As 30-40% of the QT-interval variability is heritable, we tested the association of common LQTS and NOS1AP gene variants with QT interval in a Finnish population-based sample. ⋯ We demonstrate that each additional copy of the KCNE1 D85N minor allele is associated with a considerable 10.5 ms prolongation of the age-, gender- and heart rate-adjusted QT interval and could thus modulate repolarization-related arrhythmia susceptibility at the population level. In addition, we robustly confirm the previous findings that three independent KCNH2 and NOSA1P variants are associated with adjusted QT interval.
-
Comparative Study
The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation.
IL-25 initiates, promotes, and augments Th2 immune responses. In this study, we report that Act1, a key component in IL-17-mediated signaling, is an essential signaling molecule for IL-25 signaling. Although Act1-deficient mice showed reduced expression of KC (CXCL1) and neutrophil recruitment to the airway compared with wild-type mice in response to IL-17 stimulation, Act1 deficiency abolished IL-25-induced expression of IL-4, IL-5, IL-13, eotaxin-1 (CCL11), and pulmonary eosinophilia. ⋯ Importantly, Act1 deficiency in epithelial cells reduced the phenotype of allergic pulmonary inflammation due to loss of IL-17-induced neutrophilia and IL-25-induced eosinophilia, respectively. These results demonstrate the essential role of epithelial-derived Act1 in allergic pulmonary inflammation through the distinct impact of the IL-17R-Act1 and IL-25R-Act1 axes. Such findings are crucial for the understanding of pathobiology of atopic diseases, including allergic asthma, which identifies Act1 as a potential therapeutic target.