Articles: signal-transducing-adaptor-proteins.
-
The cAMP-dependent protein kinase (PKA) is targeted to specific subcellular compartments through its interaction with A-kinase anchoring proteins (AKAPs). AKAPs contain an amphipathic helix domain that binds to the type II regulatory subunit of PKA (RII). Synthetic peptides containing this amphipathic helix domain bind to RII with high affinity and competitively inhibit the binding of PKA with AKAPs. ⋯ These proteins, ropporin (a protein previously shown to interact with the Rho signaling pathway) and AKAP-associated sperm protein, are 39% identical to each other and share a strong sequence similarity with the conserved domain on the N terminus of RII that is involved in dimerization and AKAP binding. Mutation of conserved residues in ropporin or RII prevents binding to AKAP110. These data suggest that sperm contains several proteins that bind to AKAPs in a manner similar to RII and imply that AKAPs may have additional and perhaps unique functions in spermatozoa.
-
J. Natl. Cancer Inst. · May 2001
Progressive resistance to apoptosis in a cell lineage model of human proliferative breast disease.
Proliferative breast disease (PBD) may increase a woman's risk of developing breast cancer, perhaps by decreasing cellular sensitivity to apoptosis. To determine whether resistance to apoptosis develops during PBD, we investigated apoptosis initiated through the Fas pathway in a series of cell lines that recapitulates the morphologic changes of PBD in nude/beige mice. ⋯ Resistance to Fas-mediated apoptosis appears to develop progressively in the MCF-10AT cell series.
-
Comparative Study
Differential expression of suppressors of cytokine signalling genes in response to nutrition and growth hormone in the septic rat.
GH treatment during critical illness and sepsis may increase mortality. A family of negative regulators of cytokine signalling, the suppressors of cytokine signalling (SOCS), have been characterised. SOCS provide a mechanism for cross-talk between the cytokine receptors, including GH. ⋯ In conclusion, CLP induced low IGF-I levels associated with increased expression of SOCS-1 and SOCS-3, both of which are known to inhibit GH receptor signalling. GH induced SOCS-2 and CIS in the CLP rat despite resistance with respect to IGF-I generation, and parenteral feeding induced CIS in the CLP rat. Thus, there is potential for a complex interaction between GH and cytokine signalling at the level of SOCS expression whereby the inflammatory response may alter GH signalling and GH may influence the inflammatory response.
-
Journal of neurochemistry · Jan 2001
Site of injury-directed induction of heme oxygenase-1 and -2 in experimental spinal cord injury: differential functions in neuronal defense mechanisms?
The heme oxygenase (HO) isozymes catalyze oxidation of the heme molecule to biliverdin and carbon monoxide (CO) with the release of chelated iron. Presently, we have defined, for the first time, propensity for site of injury-directed induction of isozymes--the stress-inducible isozyme, HO-1, responds distal (below) and the glucocorticoid (GC)-inducible HO-2 responds proximal (above) to the site of injury. We have also shown that reactive iron (Fe3+) and cGMP staining spatially resemble that of HO-1; which, in turn, colocalizes in motor neurons with transcription factors: Fas-associated protein containing death domain (FADD), tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p53. ⋯ Also, a site of injury-directed pattern of induction of FADD, TRAIL, and p53 immunoreactivity, and a widespread colocalization of the oncogenes with HO-1 protein, were found within motor neurons below the level of injury. We forward the hypothesis that HO-1 and HO-2 have different roles in the defense mechanisms of the injured nervous system. We hypothesize that HO-1 protects against further damage by contributing to controlled cell death through their intrinsic suicide program, while HO-2 is involved in suppression of inflammatory response by NO derived radicals.
-
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis of transformed and cancer cells but not of most normal cells. Recent studies have revealed an unforeseen toxicity of TRAIL toward normal human hepatocytes, thereby bringing into question the safety of systemic administration of TRAIL in humans with cancer. We found that SW480 colon adenocarcinoma, or H460 non-small cell lung cancer cell lines, which are sensitive to TRAIL, were not protected by the caspase 9 inhibitor Z-LEHD-FMK from TRAIL-induced apoptosis. ⋯ A similar brief exposure to TRAIL plus Z-LEHD-FMK inhibited colony growth of SW480 but not HCT116 cells. Because some cancer cell lines are not protected from TRAIL-mediated killing by Z-LEHD-FMK, we believe that a brief period of caspase 9 inhibition during TRAIL administration may widen the therapeutic window and allow cancer cell killing while protecting normal liver cells. This strategy could be further developed in the effort to advance TRAIL into clinical trials.