Articles: neuronavigation.
-
The objective of this study was to develop, demonstrate, and validate a remotely controlled operation scheme coupled with prospective magnetic resonance imaging (MRI)-based stereotaxy for in vivo neurosurgical applications. The novel concept of the prospective guidance scheme is to employ tomographical imaging feedback, such as MRI or CT, to facilitate prospectively the targeting process of a biopsy needle at near-real-time speed (1 image/s). Because the orientation of a biopsy needle pivoted at an entry point on the patient's skull has 2 degrees of freedom, the alignment of its trajectory to a target point can be guided by two-dimensional (2D) images whose plane is placed perpendicular to the desired trajectory. ⋯ The actual targeting error was 1.53 +/- 0.17 mm from an intended target location, with the maximum distance error of 1.72 mm at a depth of 85 mm. This remotely controlled surgical approach with intraoperative MRI guidance is feasible at 1.5 T, and has allowed neurosurgeons to perform neurobiopsies comfortably and efficiently in a routine clinical MR scanner. This scheme provides a unique alternative stereotactic procedure that can take full advantage of the prospective guidance potential offered by various modern tomographic imaging systems.
-
Stereotact Funct Neurosurg · Jan 2002
Comparative StudyMRI-guided frameless stereotactic percutaneous cordotomy.
Use of intraoperative myelography as a radiologic guidance for percutaneous cervical cordotomy (PCC) has been superseded by more modern imaging. The only significant advancement in cordotomy techniques over the last 30 years has been CT-guided PCC. The goal of this study was to demonstrate the feasibility of an MRI-guided frameless technique in high cervical cordotomy. ⋯ Intraoperative frameless stereotaxy provides surgeons with accurate information that helps to guide the operative approach and precisely tailor the trajectory and depth of the electrode, potentially increasing the safety and efficacy of the operation.
-
Comput. Aided Surg. · Jan 2002
Comparative StudyComparison of functional brain PET images and intraoperative brain-mapping data using image-guided surgery.
Knowledge about the spatial localization of eloquent brain areas is essential for resecting lesions in the vicinity of these areas. The classical approach is to perform surgery on the awake patient under local anesthesia using brain-mapping techniques. As an alternative, the location of eloquent areas can be visualized by preoperative functional brain-imaging techniques, for example, positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG). Using functional activation PET, both methods were combined by integration into a frameless navigation system (BrainLAB) and used to map speech-eloquent areas. ⋯ This matching and mapping technique is suitable for monitoring eloquent speech areas during surgical resection of extensive left-sided low-grade gliomas, allowing a direct comparison between intraoperative electrophysiological brain mapping and preoperative functional brain-imaging findings. The sensitivity and specificity of functional imaging techniques can now be evaluated by reconciling the data with the intraoperative stimulation results.
-
Comparative Study Clinical Trial
The Zeiss-MKM system for frameless image-guided approach in epidural motor cortex stimulation for central neuropathic pain.
Twelve patients (seven female, and five male, mean age 55.6 years) suffering from refractory central (ischemic/traumatic [eight cases]) and neuropathic pain (trigeminal neuropathy [four cases]) underwent surgery for the implantation of an epidural motor cortex stimulation (MCS) device in which the authors used a frameless neuronavigation system, the Zeiss-MKM microscope. ⋯ Since intraoperative SSEP monitoring has, for many years, been considered the standard procedure to approach motor target, the development of an accurate stereotactic image guidance system could help to increase the efficacy of MCS on the alleviation of pain. The excellent spatial accuracy provided by the Zeiss-MKM navigation system allows precise data correlations that represent a remarkable means to validate functional MR imaging as an alternative to SSEP. The authors believe that developing stereotactic image guidance with such a navigation system could improve the success rate of MCS.