Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jul 2016
Simulation of the impact of programs for prevention and screening of Pediatric Abusive Head Trauma.
Primary prevention programs of pediatric abusive head trauma (PAHT) exist and early screening is proposed, but negative effects of mislabeling parents as abusers, an important issue, are not well documented. The aim of our study was to simulate the possible impact of programs for the primary prevention and screening of PAHT. We developed Markov models that simulate the life histories of PAHT with no intervention, with primary prevention program only, with screening program, and with both programs in a hypothetical cohort of 800,000 newborns in a high-income country. ⋯ Screening could prevent up to 6 (95% CI 0-29) or cause up to 66 (95% CI 0-361) deaths per 100,000 children born alive. The impact of both programs was uncertain. Our model confirmed the potential benefits of primary prevention and documented the uncertainty associated with screening of PAHT.
-
Journal of neurotrauma · Jul 2016
Effects of controlled cortical impact on the mouse brain vasculome.
Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. ⋯ These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury.
-
Comparative Study Observational Study
Intraventricular intracranial pressure monitoring improves the outcome of older adults with severe traumatic brain injury: an observational, prospective study.
Intracranial pressure (ICP) monitoring is widely used in the management of patients with severe traumatic brain injury (TBI). However, there is limited evidence about the efficacy of ICP monitoring in older subjects (aged ≥65 years). This study evaluated the effect of intraventricular ICP monitoring on the outcome of older adults suffering from a severe TBI. ⋯ Intraventricular ICP monitoring may have beneficial effects on the decreased in-hospital mortality and improved 6-month outcome of older patients with severe TBI. However, given that this was an observational study conducted in a single institution, further well-designed randomized control trials are needed to evaluate the effect of intraventricular ICP monitoring on the outcome of older severe TBI patients.
-
Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. ⋯ Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals report cognitive disabilities (Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al., 2008). One of the molecular mechanisms associated with chronic cognitive disabilities is impaired cAMP signaling in the hippocampus. In this study, we report that a selective phosphodiesterase 4B (PDE4B) inhibitor reduces chronic cognitive deficits after TBI and rescues deficits in hippocampal long-term potentiation. These results suggest that PDE4B inhibition has the potential to improve learning and memory ability and overall functioning for people living with TBI.