Articles: traumatic-brain-injuries.
-
The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. ⋯ Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope).
-
Brain injury : [BI] · Jan 2016
Multicenter StudyDisability and health-related quality-of-life 4 years after a severe traumatic brain injury: A structural equation modelling analysis.
To assess predictors and indicators of disability and quality-of-life 4 years after severe traumatic brain injury (TBI), using structural equation modelling (SEM). ⋯ Although this study should be considered as explorative, it suggests that disability and quality-of-life were directly influenced by different factors. While disability appeared to result from an interaction of a wide range of factors, quality-of-life was solely directly related to psycho-cognitive factors.
-
Journal of neurotrauma · Jan 2016
ReviewBrain Networks Subserving Emotion Regulation and Adaptation after Mild Traumatic Brain Injury.
The majority of patients with traumatic brain injury (TBI) sustain a mild injury (mTBI). One out of 4 patients experiences persistent complaints, despite their often normal neuropsychological test results and the absence of structural brain damage on conventional neuroimaging. Susceptibility to develop persistent complaints is thought to be affected by interindividual differences in adaptation, which can also be influenced by preinjury psychological factors. ⋯ In this article, we aim to integrate findings from functional and structural MRI studies on this topic. Alterations within the default mode, executive and salience network have been found in relation to complaints post-mTBI. Dysfunction of the medial prefrontal cortex may impair network dynamics for emotion regulation and adaptation post-mTBI, resulting in persistent post-concussive complaints.
-
Pediatric neurosurgery · Jan 2016
Traumatic Brain Injury in Children: Role of CDRs-PECARN as a Clinical Predictive Resource for Evaluation of Intracranical Lesions and Neuropsychiatric Outcomes.
Cranial computed tomography (CT) is considered the gold standard for the diagnosis of traumatic brain injury (TBI). The aim of this study was to evaluate if the clinical decision rules proposed by the Pediatric Emergency Care Applied Research Network (CDRs-PECARN) are really able to identify the patients who do not need cranial CT. This study investigates the neuropsychiatric outcome after TBI according to a pediatric version of the Glasgow Outcome Scale-Extended (GOS-E Peds). ⋯ We also evaluated the correlations between the GOS-E Peds and Glasgow Coma Scale and between the GOS-E Peds and cranial CT scan. Our study confirms the validation of the PECARN TBI prediction rules as a clinical instrument which can play a significant role in CT decision-making for children with TBI. It also demonstrates that the GOS-E Peds is a valid pediatric outcome scale for children with TBI, despite some important limitations.
-
Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. ⋯ Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock.