Articles: traumatic-brain-injuries.
-
Although the causes of head injury, the population at risk, and approaches to prevention and treatment are continually evolving, there is little information about how these are reflected in patterns of mortality over time. We used population-based comprehensive data uniquely available in Scotland to investigate changes in the total numbers of deaths from 1974 to 2012, as well as the rates of head injury death, from different causes, overall and in relation to age and gender. Total mortality fell from an annual average of 503 to 339 with a corresponding annual decrease in rate from 9.6 to 6.4 per 100,000 population, the decline substantially occurring between 1974 and 1990. ⋯ Deaths from falling and all other causes did not decline, coming to outnumber transport accident deaths by 1998, which accounts for the overall absence of change in total mortality in recent years. In order to reduce mortality in the future, more-effective measures to prevent falls are needed and these strategies will vary in younger adults (where alcohol is often a factor), as well as in older adults where infirmity can be a cause. In addition, measures to sustain reductions in transport accidents need to be maintained and further developed.
-
Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. ⋯ In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory.
-
Mol. Cell. Neurosci. · May 2015
ReviewEpidemiology of mild traumatic brain injury and neurodegenerative disease.
Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. ⋯ The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. This article is part of a Special Issue entitled SI:Traumatic Brain Injury.
-
Ann. N. Y. Acad. Sci. · May 2015
Hypertonic saline for the management of raised intracranial pressure after severe traumatic brain injury.
Hyperosmolar agents are commonly used as an initial treatment for the management of raised intracranial pressure (ICP) after severe traumatic brain injury (TBI). They have an excellent adverse-effect profile compared to other therapies, such as hyperventilation and barbiturates, which carry the risk of reducing cerebral perfusion. The hyperosmolar agent mannitol has been used for several decades to reduce raised ICP, and there is accumulating evidence from pilot studies suggesting beneficial effects of hypertonic saline (HTS) for similar purposes. ⋯ To date, no large clinical trial has been performed to directly compare the two agents. The best current evidence suggests that mannitol is effective in reducing ICP in the management of traumatic intracranial hypertension and carries mortality benefit compared to barbiturates. Current evidence regarding the use of HTS in severe TBI is limited to smaller studies, which illustrate a benefit in ICP reduction and perhaps mortality.
-
Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. ⋯ Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE.