Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jan 2024
Observational StudyPrognostic and Diagnostic Utility of Serum Biomarkers in Pediatric Traumatic Brain Injury.
Traumatic brain injury (TBI) remains a major cause of morbidity and death among the pediatric population. Timely diagnosis, however, remains a complex task because of the lack of standardized methods that permit its accurate identification. The aim of this study was to determine whether serum levels of brain injury biomarkers can be used as a diagnostic and prognostic tool in this pathology. ⋯ Individual biomarker performance on predicting unfavorable outcomes was measured at 0, 24, and 48h across different GOS-E Peds time points, which was significant for p-tau181 at 0h at all time points, UCH-L1 at 0h at 6-9 months and 12 months, GFAP at 48h at 12 months, NfL at 0h at 12 months, tau at 0h at 12 months and S100B at 0h at 12 months. We concluded that TBI leads to increased serum neuronal injury biomarkers during the first 0-48h post-injury. A biomarker panel measuring these proteins could aid in the early diagnosis of mild to moderate pTBI and may predict neurological outcomes across the injury spectrum.
-
Journal of neurotrauma · Jan 2024
Lysophospholipids are Associated with Outcomes after Mild Traumatic Brain Injury in Humans.
Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. ⋯ Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-month outcomes (16.0% improvement, p = 0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.
-
Journal of neurotrauma · Jan 2024
Long-term follow-up of critically ill traumatic brain injury patients: from intensive care parameters to patient and caregiver-reported outcome.
Abstract Traumatic brain injury (TBI) is associated with a high social and financial burden due to persisting (severe) disabilities. The consequences of TBI after intensive care unit (ICU) admission are generally measured with global disability screeners such as the Glasgow Outcome Scale-Extended (GOSE), which may lack precision. To improve outcome measurement after brain injury, a comprehensive clinical outcome assessment tool called the Minimal Dataset for Acquired Brain Injury (MDS-ABI) was recently developed. ⋯ All but four patients lived at home independently, often together with their informal caregiver (81%). Although the mild-moderate TBI group and the severe TBI group had significantly different clinical trajectories, there were no persisting differences between the groups for patient or caregiver outcomes at follow-up. As a large proportion of the patients experienced long-lasting consequences beyond global disability or independent living, clinicians should implement a multi-domain outcome set such as the MDS-AB to follow up on their patients.
-
Journal of neurotrauma · Jan 2024
Evidence of ongoing cerebral microstructural reorganization in children with persisting symptoms following mild traumatic brain injury: a NODDI DTI analysis.
Approximately 300-550 children per 100,000 sustain a mild traumatic brain injury (mTBI) each year, of whom ∼25-30% have long-term cognitive problems. Following mTBI, free water (FW) accumulation occurs in white matter (WM) tracts. Diffusion tensor imaging (DTI) can be used to investigate structural integrity following mTBI. ⋯ WM ODI at 1 month was a more sensitive predictor of clinical recovery at 2-3 months post-injury than FA, FISO, or clinical measures alone. Our results show evidence of ongoing microstructural reorganization or neuroinflammation between 1 and 2-3 months post-injury, further supporting delayed return to play in children who remain symptomatic. We recommend future research examining the clinical utility of NODDI following mTBI to predict recovery or persistence of post-concussion symptoms and thereby inform management of mTBI.
-
S100 B is an extensively studied neuro-trauma marker, but its specificity and subsequently interpretation in major trauma patients might be limited, since extracerebral injuries are known to increase serum levels. Thus, we evaluated the potential role of S100B in the assessment of severe traumatic brain injury (TBI) in multiple injured patients upon emergency room (ER) admission and the first days of intensive care unit (ICU) stay. ⋯ In conclusion, S100B is a valid biomarker for prediction of mortality in major trauma patients with a higher accuracy when assessed at the first day of ICU stay vs. immediately after ER admission. Since S100B did not correlate with pathologic TBI findings in multiple injured patients, it failed as predictive neuro-marker because extracerebral injuries demonstrated a higher influence on admission levels than neurotrauma. Although S100B levels are indicative for injury severity they should be interpreted with caution in polytrauma patients.