Articles: traumatic-brain-injuries.
-
Review Meta Analysis
Hypertonic saline in severe traumatic brain injury: a systematic review and meta-analysis of randomized controlled trials.
Hypertonic saline solutions are increasingly used to treat increased intracranial pressure following severe traumatic brain injury. However, whether hypertonic saline provides superior management of intracranial pressure and improves outcome is unclear. We thus conducted a systematic review to evaluate the effect of hypertonic saline in patients with severe traumatic brain injury. ⋯ We observed no mortality benefit or effect on the control of intracranial pressure with the use of hypertonic saline when compared to other solutions. Based on the current level of evidence pertaining to mortality or control of intracranial pressure, hypertonic saline could thus not be recommended as a first-line agent for managing patients with severe traumatic brain injury.
-
Providing current, reliable and evidence based information for clinicians and researchers in a synthesised and summarised way can be challenging particularly in the area of traumatic brain injury where a vast number of reviews exists. These reviews vary in their methodological quality and are scattered across varying sources. In this paper, we present an overview of systematic reviews that evaluate the pharmacological interventions in traumatic brain injury (TBI). By doing this, we aim to evaluate the existing evidence for improved outcomes in TBI with pharmacological interventions, and to identify gaps in the literature to inform future research. ⋯ The evidence from high quality systematic reviews show that there is currently insufficient evidence for the use of magnesium, monoaminergic and dopamine agonists, progesterone, aminosteroids, excitatory amino acid inhibitors, haemostatic and antifibrinolytic drugs in TBI. Anti-convulsants are only effective in reducing early seizures with no significant difference between phenytoin and leviteracetam. There is no difference between propofol and midazolam for sedation in TBI patients and ketamine may not cause increased ICP. Overviews of systematic review provide informative and powerful summaries of evidence based research.
-
The risk of death from venous thromboembolism (VTE) is high in intensive care unit patients with neurological diagnoses. This is due to an increased risk of venous stasis secondary to paralysis as well as an increased prevalence of underlying pathologies that cause endothelial activation and create an increased risk of embolus formation. ⋯ The lack of a solid evidentiary base has posed challenges for the establishment of consistent and evidence-based clinical practice standards. In response to this need for guidance, the Neurocritical Care Society set out to develop and evidence-based guideline using GRADE to safely reduce VTE and its associated complications.
-
Journal of neurosurgery · Feb 2016
Review Meta AnalysisAssociation of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis.
Mild traumatic brain injury (TBI) has been proposed as a risk factor for the development of Alzheimer's disease, Parkinson's disease, depression, and other illnesses. This study's objective was to determine the association of prior mild TBI with the subsequent diagnosis (that is, at least 1 year postinjury) of neurological or psychiatric disease. ⋯ History of TBI, including mild TBI, is associated with the development of neurological and psychiatric illness. This finding indicates that either TBI is a risk factor for heterogeneous pathological processes or that TBI may contribute to a common pathological mechanism.
-
Since traumatic brain injury is the most common cause of long-term disability and death among young adults, it represents an enormous socio-economic and healthcare burden. As a consequence of the primary lesion, a perifocal brain edema develops causing an elevation of the intracranial pressure due to the limited intracranial space. This entails a reduction of the cerebral perfusion pressure and the cerebral blood flow. ⋯ As the irreversible primary lesion can only be inhibited by primary prevention, the therapy of traumatic brain injury focuses on the secondary injuries. The treatment consists of surgical therapy evacuating the space-occupying intracranial lesion and conservative intensive medical care. Due to the complex pathophysiology the therapy of traumatic brain injury should be rapidly performed in a neurosurgical unit.