Articles: traumatic-brain-injuries.
-
Traumatic brain injury (TBI) imparts a significant health burden in the United States, leaving many patients with chronic deficits. Improvement in clinical outcome following TBI has been hindered by a lack of treatments that have proven successful during phase III trials. Research remains active into a variety of non-pharmacologic, small molecule, endocrine and cell based therapies. ⋯ Increasingly, studies have shown that these cells are able to attenuate the inflammatory response to injury and stimulate production of neurotrophic factors. In animal models, beneficial effects on blood-brain barrier permeability, neuroprotection and neural repair through enhanced axonal remodeling have been observed. Clinical investigation with cell therapies for TBI remains ongoing.
-
Prog Mol Biol Transl Sci · Jan 2016
ReviewGH and Pituitary Hormone Alterations After Traumatic Brain Injury.
Traumatic brain injury (TBI) is a crucially important public health problem around the world, which gives rise to increased mortality and is the leading cause of physical and psychological disability in young adults, in particular. Pituitary dysfunction due to TBI was first described 95 years ago. However, until recently, only a few papers have been published in the literature and for this reason, TBI-induced hypopituitarism has been neglected for a long time. ⋯ Patients with TBI without neuroendocrine changes and those with TBI-induced hypopituitarism share the same clinical manifestations, such as attention deficits, impulsion impairment, depression, sleep abnormalities, and cognitive disorders. For this reason, TBI-induced hypopituitarism may be neglected in TBI victims and it would be expected that underlying hypopituitarism would aggravate the clinical picture of TBI itself. Therefore, the diagnosis and treatment of unrecognized hypopituitarism due to TBI are very important not only to decrease morbidity and mortality due to hypopituitarism but also to alleviate the chronic sequelae caused by TBI.
-
Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. ⋯ Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.
-
The glymphatic system is a recently discovered macroscopic waste clearance system that utilizes a unique system of perivascular tunnels, formed by astroglial cells, to promote efficient elimination of soluble proteins and metabolites from the central nervous system. Besides waste elimination, the glymphatic system also facilitates brain-wide distribution of several compounds, including glucose, lipids, amino acids, growth factors, and neuromodulators. ⋯ Since the concept of the glymphatic system is relatively new, we will here review its basic structural elements, organization, regulation, and functions. We will also discuss recent studies indicating that glymphatic function is suppressed in various diseases and that failure of glymphatic function in turn might contribute to pathology in neurodegenerative disorders, traumatic brain injury and stroke.
-
Intubation of the neurologically injured patient is a critical procedure that must be done in a manner to prevent further neurologic injury. Although many different medications and techniques have been used to meet specific needs, there is little to no evidence to support many claims. ⋯ Ideal intubation conditions should be obtained through the use of airway manipulation techniques and appropriate medication choice for rapid sequence intubation in patients who are neurologically injured.