Articles: traumatic-brain-injuries.
-
Expert Opin Investig Drugs · Jun 2015
ReviewInvestigational agents for treatment of traumatic brain injury.
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. ⋯ TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
-
Trends in neurosciences · Jun 2015
ReviewGlial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). ⋯ GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
-
It is time to stop using the term concussion as it has no clear definition and no pathological meaning. This confusion is increasingly problematic as the management of 'concussed' individuals is a pressing concern. Historically, it has been used to describe patients briefly disabled following a head injury, with the assumption that this was due to a transient disorder of brain function without long-term sequelae. ⋯ Using vague terminology for post-traumatic problems leads to misconceptions and biases in the diagnostic process, producing uninterpretable science, poor clinical guidelines and confused policy. We propose that the term concussion should be avoided. Instead neurologists and other healthcare professionals should classify the severity of traumatic brain injury and then attempt to precisely diagnose the underlying cause of post-traumatic symptoms.
-
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. ⋯ First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
-
Journal of neurotrauma · May 2015
ReviewSystematic Review of Clinical Studies Examining Biomarkers of Brain Injury in Athletes Following Sports-Related Concussion.
The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed, MEDLINE, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. ⋯ A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of different sports. Although there are no validated biomarkers for concussion as yet, there is potential for biomarkers to provide diagnostic, prognostic, and monitoring information postinjury. They could also be combined with neuroimaging to assess injury evolution and recovery.