Articles: traumatic-brain-injuries.
-
Journal of neurosurgery · Apr 2023
Novel application of the Rotterdam CT score in the prediction of intracranial hypertension following severe traumatic brain injury.
Severe traumatic brain injury (TBI) is associated with intracranial hypertension (ICHTN). The Rotterdam CT score (RS) can predict clinical outcomes following TBI, but the relationship between the RS and ICHTN is unknown. The purpose of this study was to investigate clinical and radiological factors that predict ICHTN in patients with severe TBI. ⋯ The RS was predictive of ICHTN in patients with severe TBI, and the diagnostic accuracy of the model was improved with the inclusion of sulcal effacement at the vertex on CT of the head. Patients with a low RS and no sulcal effacement are likely at low risk for the development of ICHTN.
-
Acute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI. ⋯ In this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
-
Invasive neuromonitoring has become an important part of pediatric neurocritical care, as neuromonitoring devices provide objective data that can guide patient management in real time. New modalities continue to emerge, allowing clinicians to integrate data that reflect different aspects of cerebral function to optimize patient management. Currently, available common invasive neuromonitoring devices that have been studied in the pediatric population include the intracranial pressure monitor, brain tissue oxygenation monitor, jugular venous oximetry, cerebral microdialysis, and thermal diffusion flowmetry. In this review, we describe these neuromonitoring technologies, including their mechanisms of function, indications for use, advantages and disadvantages, and efficacy, in pediatric neurocritical care settings with respect to patient outcomes.
-
The authors tested the hypothesis that the effects of traumatic brain injury, surgery, and sevoflurane interact to induce neurobehavioral abnormalities in adult male rats and in their offspring (an animal model of intergenerational perioperative neurocognitive disorder). ⋯ These findings in rats suggest that young adult males with traumatic brain injury are at an increased risk of developing perioperative neurocognitive disorder, as are their unexposed male but not female offspring.
-
Journal of neurotrauma · Apr 2023
Therapeutic role of microRNAs of small extracellular vesicles from human mesenchymal stromal/stem cells in the treatment of experimental traumatic brain injury.
Mesenchymal stem/stromal cells (MSC)-derived small extracellular vesicles (sEVs) possess therapeutic potential for treatment of traumatic brain injury (TBI). The essential role of micro ribonucleic acids (miRNAs) underlying the beneficial effects of MSC-derived sEVs for treatment of TBI remains elusive. The present study was designed to investigate the role of microRNAs in sEVs from MSCs with Argonaute 2 knockdown (Ago2-KD) in neurological recovery, neuroinflammation, and neurovascular remodeling in TBI rats. ⋯ The therapeutic effects of Ago2-KD-sEV were comparable to that of vehicle treatment. Our findings demonstrate that attenuation of Ago2 protein in MSCs reduces miRNAs in MSC-derived sEVs and abolishes exosome treatment-induced beneficial effects in TBI recovery, suggesting that miRNAs in MSC-derived sEVs play an essential role in reducing neuronal cell loss, inhibiting neuroinflammation, and augmenting angiogenesis and neurogenesis, as well as improving functional recovery in TBI. The findings underscore the important role of miRNAs in MSC-derived sEVs in the treatment of TBI.