Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Feb 2023
ReviewMicrodialysis-based classifications of abnormal metabolic states following traumatic brain injury: a systematic review of the literature.
After traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. ⋯ This is the first systematic review summarizing the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists among individual classifications, there is broad agreement about broad definitions of metabolic crisis, ischemia, and mitochondrial dysfunction. Identifying the etiology of deranged cerebral metabolism after TBI is important for targeting therapeutic interventions.
-
Journal of neurotrauma · Feb 2023
Cumulative blast exposure estimate model for Special Operations Forces combat Soldiers.
Special Operations Forces (SOF) Service members endure frequent exposures to blast and overpressure mechanisms given their high training tempo. The link between cumulative subconcussive blasts on short- and long-term neurological impairment is largely understudied. Neurodegenerative diseases such as brain dysfunction, cognitive decline, mild cognitive impairment, and dementia may develop with chronic exposures. ⋯ Estimating blast exposures during routine CQB training can be determined from empirical measures taken in CQB environments. Factoring in daily, weekly, training cycle, or even career length may reasonably estimate cumulative occupational training blast exposures for SOF Service members. Future work may permit more granular exposure estimates based on operational blast exposures and those experienced by other military occupational specialties.
-
Journal of neurotrauma · Feb 2023
Multicenter StudySerum Acylcarnitine and Long-term Functional Prognosis after Traumatic Brain Injury with Intracranial Injury: A Multicenter Prospective Study.
Serum biomarkers have potential to help predict prognosis of traumatic brain injury (TBI). The objective of this study was to evaluate the association between serum acylcarnitine levels and functional outcomes at 1 month/6 months after injury for TBI patients with intracranial hemorrhage or diffuse axonal injury. This study is a multi-center prospective cohort study in which adult TBI patients with intracranial injury visiting the emergency departments (EDs) from December 2018 to June 2020 were enrolled. ⋯ The odds for 1-month poor functional outcome increased in the high-normal and the high groups [adjusted odds ratios, AORs (95% confidence intervals, CIs): 1.56 (1.09-2.23) and 2.47 (1.63-3.75)], compared with the low-normal group) and also as a continuous variable [1.05 (1.03-1.07) for each 1 μmol/L]. Regarding 6-month mortality, the high group had significantly higher odds when compared with the low-normal group [AOR (95% CI): 2.16 (1.37-3.40)]. Higher serum acylcarnitine levels are associated with poor functional outcomes at 1 month/6 months after injury for TBI patients with intracranial injury.
-
Journal of neurosurgery · Feb 2023
Observational StudyAdjuvant oral tranexamic acid and reoperation after burr hole surgery in patients with chronic subdural hematoma: propensity score-matched analysis using a nationwide inpatient database.
Adjuvant medical treatment to reduce the recurrence rate after burr hole surgery for chronic subdural hematoma (CSDH) has not yet been established. This study aimed to investigate the association between tranexamic acid (TXA) use after burr hole surgery and the reoperation rate in patients with CSDH. ⋯ Findings of this study, using a nationwide inpatient database, suggest that adjuvant TXA use after burr hole surgery was associated with a reduced reoperation rate in patients with CSDH.
-
Journal of neurotrauma · Feb 2023
Feasibility and utility of a flexible outcome assessment battery for longitudinal traumatic brain injury research: A TRACK-TBI study.
The effects of traumatic brain injury (TBI) are difficult to measure in longitudinal cohort studies, because disparate pre-injury characteristics and injury mechanisms produce variable impairment profiles and recovery trajectories. In preparation for the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, which followed patients with injuries ranging from uncomplicated mild TBI to coma, we designed a multi-dimensional Flexible outcome Assessment Battery (FAB). The FAB relies on a decision-making algorithm that assigns participants to a Comprehensive (CAB) or Abbreviated Assessment Battery (AAB) and guides test selection across all phases of recovery. ⋯ Among participants followed at 2w (n = 2094), 3m (n = 1871), 6m (n = 1736), and 12m (n = 1607) post-injury, 95-99% received valid completion scores on the FAB, in full or in part, either in person or by telephone. Level of function assessed by the FAB-enabled approach at 2w was associated with 6m and 12m GOSE scores (proportional odds p < 0.001). These findings suggest that the participant classification methodology afforded by the FAB may enable more effective data collection to improve detection of natural history changes and TBI treatment effects.