Articles: traumatic-brain-injuries.
-
Intensive care medicine · Oct 2022
ReviewIntracranial pressure: current perspectives on physiology and monitoring.
Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of cerebrovascular autoregulatory status. ⋯ ICP is typically assessed invasively but a number of emerging, non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitoring can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accordingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and management remain a high priority in neurosurgery and neurocritical care.
-
Journal of neurotrauma · Oct 2022
The Effect Player Position on Serum Biomarkers During Participation in a Season of Collegiate Football.
This prospective cohort study examined the relationship between a panel of four serum proteomic biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], total Tau, and neurofilament light chain polypeptide [NF-L]) in 52 players from two different cohorts of male collegiate student football athletes from two different competitive seasons of Division I National Collegiate Athletic Association Football Bowl Subdivision. This study evaluated changes in biomarker concentrations (as indicators of brain injury) over the course of the playing season (pre- and post-season) and also assessed biomarker concentrations by player position using two different published classification systems. Player positions were divided into: 1) speed (quarterbacks, running backs, halfbacks, fullbacks, wide receivers, tight ends, defensive backs, safety, and linebackers) versus non-speed (offensive and defensive linemen), and 2) "Profile 1" (low frequency/high strain magnitudes positions including quarterbacks, wide receivers, and defensive backs), "Profile 2" (mid-range impact frequency and strain positions including linebackers, running backs, and tight ends), and "Profile 3" (high frequency/low strains positions including defensive and offensive linemen). ⋯ Only NF-L showed significant differences between profiles 2.7 to 3.1 to 4.2 in the pre-season (p = 0.042). GFAP, Tau, and NF-L concentrations were significantly associated with different playing positions with the highest concentrations in speed and "Profile 1" positions and the lowest concentrations were in non-speed and "Profile 3" positions. Blood-based biomarkers (GFAP, Tau, NF-L) provide an additional layer of injury quantification that could contribute to a better understanding of the risks of playing different positions.
-
People older than 65 years tend to have traumatic brain injuries (TBIs) more frequently and have a higher mortality rate after TBI than younger individuals. The aim of this study was to determine the effects of age on in-hospital mortality among patients who had fall-related TBIs at home, emphasizing the effect of specific locations in the house on the outcome. ⋯ Elderly individuals over the age of 85 are the most vulnerable to fall-related TBI mortality at home. A fall prevention strategy for the oldest-old is needed, especially for the bathroom, stairs, and the ancillary space outside the house.
-
Journal of neurotrauma · Oct 2022
ReviewEpigenetic modifications and their potential contributions to traumatic brain injury pathobiology and outcome.
Epigenetic information is not permanently encoded in the DNA sequence, but rather consists of reversible, heritable modifications that regulate the gene expression profile of a cell. Epigenetic modifications can result in cellular changes that can be long lasting and include DNA methylation, histone methylation, histone acetylation, and RNA methylation. ⋯ In this review, we will summarize the experimental and clinical findings demonstrating that TBI triggers epigenetic modifications, with a focus on changes in DNA methylation, histone methylation, and the translational utility of the universal methyl donor S-adenosylmethionine (SAM). Finally, we will review the evidence for using methyl donors as possible treatments for TBI-associated pathology and outcome.
-
Journal of neurotrauma · Oct 2022
ReviewRemote follow-up technologies in traumatic brain injury: a scoping review.
Traumatic brain injury (TBI) remains a leading cause of death and disability worldwide. Motivations for outcome data collection in TBI are threefold: to improve patient outcomes, to facilitate research, and to provide the means and methods for wider injury surveillance. Such data play a pivotal role in population health, and ways to increase the reliability of data collection following TBI should be pursued. ⋯ Where reported, clinical facilitators, remote follow-up timing and intervals between sessions, synchronicity of follow-up instances, proxy involvement, outcome measures utilized, and technology evaluation efforts are described. FUTs can aid more temporally sensitive assessments and capture fluctuating sequelae, a benefit of particular relevance to TBI cohorts. However, the evidence base surrounding FUTs remains in its infancy, particularly with respect to large samples, low- and middle-income patient cohorts, and the validation of outcome measures for deployment via such remote technology.