Articles: traumatic-brain-injuries.
-
Anesthesia and analgesia · Apr 2022
Dexmedetomidine Ameliorates Perioperative Neurocognitive Disorders by Suppressing Monocyte-Derived Macrophages in Mice With Preexisting Traumatic Brain Injury.
Traumatic brain injury (TBI) initiates immune responses involving infiltration of monocyte-derived macrophages (MDMs) in the injured brain tissue. These MDMs play a key role in perioperative neurocognitive disorders (PNDs). We tested the hypothesis that preanesthetic treatment with dexmedetomidine (DEX) could suppress infiltration of MDMs into the hippocampus of TBI model mice, ameliorating PND. ⋯ Preanesthetic treatment with DEX suppressed infiltration of MDMs in the hippocampus and ameliorated PND in TBI model mice. Preanesthetic treatment with DEX appears to suppress infiltration of MDMs in the hippocampus and may lead to new treatments for PND in patients with a history of TBI.
-
Journal of neurotrauma · Apr 2022
Head impact exposure, grey matter volume, and moderating effects of estimated IQ and educational attainment in former athletes at midlife.
Repetitive head impact (RHI) exposure has been associated with differences in brain structure among younger active athletes, most often within the hippocampus. Studies of former athletes at early-midlife are limited. We investigated the association between RHI exposure and gray matter (GM) structure, as well as moderating factors, among former athletes in early-midlife. ⋯ Consistent with studies involving younger, active athletes, smaller hippocampal volumes were selectively associated with greater RHI exposure among former collegiate football players at midlife. This relationship was moderated by higher levels of education. Future longitudinal studies are needed to investigate the course of possible changes that can occur between early-midlife and older ages, as well as the continued protective effect of education and other potential influential factors.
-
Traumatic brain injury is a common and devastating injury that is the leading cause of neurological disability and death worldwide. Patients with cerebral lobe contusion received conservative treatment because of their mild manifestations, but delayed intracranial hematoma may increase and even become life-threatening. We explored the noninvasive method to predict the prognosis of progression and Glasgow Outcome Scale (GOS) by using a quantitative radiomics approach and statistical analysis. ⋯ A radiomic-based model that merges radiomics and clinical features is a noninvasive approach to predict hematoma progression and clinical outcomes of cerebral contusions in traumatic brain injury.
-
Journal of neurotrauma · Apr 2022
Dysfunctional ER-mitochondrion coupling is associated with ER stress-induced apoptosis and neurological deficits in a rodent model of severe head injury.
Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damage of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact device. ⋯ This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (inositol 1,4,5-trisphosphate receptor type 1 [IP3R1], voltage-dependent anion channel 1 [VDAC1], glucose-regulated protein 75 [GRP75], Sigma 1 receptor [Sigma-1R]), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Further, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
-
Observational Study
Serum Caspase-1 as an Independent Prognostic Factor in Traumatic Brain Injured Patients.
The objectives of this study were to assess the association between serum caspase 1 levels and known clinical and radiological prognostic factors and determine whether caspase 1was a more powerful predictor of outcome after traumatic brain injury (TBI) than clinical indices alone, to determine the association between the serum levels of caspase 1 and the 6-month outcome, and to evaluate if there is any association between caspase 1 with clinical and radiological variables. ⋯ In this cohort of patients with TBI, we show that serum caspase 1 protein levels on admission are an independent prognostic factor after TBI. Serum caspase 1 levels on admission are higher in patients who will present unfavorable outcomes 6 months after TBI. Caspase 1 levels on admission are associated with the injury severity determined by the Glasgow Coma Scale.