Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Aug 2017
Randomized Controlled TrialNeck collar with mild jugular vein compression ameliorates brain activation changes during a working memory task after a season of high school football.
Emerging evidence indicates that repetitive head impacts, even at a sub-concussive level, may result in exacerbated or prolonged neurological deficits in athletes. This study aimed to: 1) quantify the effect of repetitive head impacts on the alteration of neuronal activity based on functional magnetic resonance imaging (fMRI) of working memory after a high school football season; and 2) determine whether a neck collar that applies mild jugular vein compression designed to reduce brain energy absorption in head impact through "slosh" mitigation can ameliorate the altered fMRI activation during a working memory task. Participants were recruited from local high school football teams with 27 and 25 athletes assigned to the non-collar and collar group, respectively. ⋯ Areas displaying less activation change in the collar group (corrected p < 0.05) included the precuneus, inferior parietal cortex, and dorsal lateral prefrontal cortex. Additionally, BOLD response in the non-collar group increased significantly in direct association with the total number of impacts and total g-force (p < 0.05). Our data provide initial neuroimaging evidence for the effect of repetitive head impacts on the working memory related brain activity, as well as a potential protective effect that resulted from the use of the purported brain slosh reducing neck collar in contact sports.
-
Neuropsychopharmacology · Aug 2017
Randomized Controlled Trial Multicenter StudyMethylphenidate and Memory and Attention Adaptation Training for Persistent Cognitive Symptoms after Traumatic Brain Injury: A Randomized, Placebo-Controlled Trial.
The purpose of this multicenter, prospective, randomized, placebo-controlled study was to evaluate and compare the efficacy of two cognitive rehabilitation interventions (Memory and Attention Adaptation Training (MAAT) and Attention Builders Training (ABT)), with and without pharmacological enhancement (ie, with methylphenidate (MPH) or placebo), for treating persistent cognitive problems after traumatic brain injury (TBI). Adults with a history of TBI at least 4 months before study enrollment with either objective cognitive deficits or subjective cognitive complaints were randomized to receive MPH or placebo and MAAT or ABT, yielding four treatment combinations: MAAT/MPH (N=17), ABT/MPH (N=19), MAAT/placebo (N=17), and ABT/placebo (N=18). Assessments were conducted pre-treatment (baseline) and after 6 weeks of treatment (post treatment). ⋯ Statistical analyses used linear regression models to predict post-treatment scores for each outcome variable by treatment type, adjusting for relevant covariates. Statistically significant (P<0.05) treatment-related improvements in cognitive functioning were found for word-list learning (MAAT/placebo>ABT/placebo), nonverbal learning (MAAT/MPH>MAAT/placebo and MAAT/MPH>ABT/MPH), and auditory working memory and divided attention (MAAT/MPH>ABT/MPH). These results suggest that combined treatment with metacognitive rehabilitation (MAAT) and pharmacotherapy (MPH) can improve aspects of attention, episodic and working memory, and executive functioning after TBI.
-
Randomized Controlled Trial Multicenter Study
A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]).
Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. ⋯ The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury.
-
Journal of critical care · Jun 2017
Randomized Controlled TrialMild induced hypothermia for patients with severe traumatic brain injury after decompressive craniectomy.
To evaluate the efficacy and safety of mild induced hypothermia for intracranial hypertension in patients with traumatic brain injury after decompressive craniectomy. ⋯ Mild induced hypothermia can reduce intracranial hypertension after decompressive craniectomy, decreasing patient mortality. Hypothermia should be considered one of the main treatments for intracranial hypertension after decompressive craniectomy in patients with traumatic brain injury.
-
Critical care medicine · May 2017
Randomized Controlled Trial Multicenter StudyMortality Risk Stratification After Traumatic Brain Injury and Hazard of Death With Titrated Hypothermia in the Eurotherm3235Trial.
Hypothermia reduces intracranial hypertension in patients with traumatic brain injury but was associated with harm in the Eurotherm3235Trial. We stratified trial patients by International Mission for Prognosis and Analysis of Clinical Trials in [Traumatic Brain Injury] (IMPACT) extended model sum scores to determine where the balance of risks lay with the intervention. ⋯ Hypothermia as a first line measure to reduce intracranial pressure to less than 20 mm Hg is harmful in patients with a lower severity of injury and no clear benefit exists in patients with more severe injuries.